diff options
author | Natanael Copa <ncopa@alpinelinux.org> | 2016-03-22 11:12:18 +0000 |
---|---|---|
committer | Natanael Copa <ncopa@alpinelinux.org> | 2016-03-22 11:12:18 +0000 |
commit | ce1b9f834595b6c8853588d9fbb58a1988320936 (patch) | |
tree | 500bc95120b14522ed9d79acd8a241abd18dfb9d | |
parent | b7491665a1eeed31172a79283db5caf12b328161 (diff) | |
download | aports-ce1b9f834595b6c8853588d9fbb58a1988320936.tar.bz2 aports-ce1b9f834595b6c8853588d9fbb58a1988320936.tar.xz |
testing/py-numpy: remove unused patches
-rw-r--r-- | testing/py-numpy/numpy-1.10.1-backport-1.patch | 127 | ||||
-rw-r--r-- | testing/py-numpy/numpy-1.10.1-backport-2.patch | 73 |
2 files changed, 0 insertions, 200 deletions
diff --git a/testing/py-numpy/numpy-1.10.1-backport-1.patch b/testing/py-numpy/numpy-1.10.1-backport-1.patch deleted file mode 100644 index 77a3c01037..0000000000 --- a/testing/py-numpy/numpy-1.10.1-backport-1.patch +++ /dev/null @@ -1,127 +0,0 @@ -From 3a816a4db9b498eb64eb837fdcca0fa8ddbe063e Mon Sep 17 00:00:00 2001 -From: Allan Haldane <allan.haldane@gmail.com> -Date: Sat, 17 Oct 2015 14:00:36 -0400 -Subject: [PATCH] BUG: recarrays viewed as subarrays don't convert to np.record - type - -Record array views were updated in #5943 to return np.record dtype -where possible, but forgot about the case of sub-arrays. - -That's fixed here, so accessing subarray fields by attribute or index -works sensibly, as well as viewing a record array as a subarray dtype, -and printing subarrays. - -This also happens to fix #6459, since it affects the same lines. - -Fixes #6497 #6459 ---- - numpy/core/records.py | 30 +++++++++++++++++++----------- - numpy/core/tests/test_records.py | 23 +++++++++++++++++++++++ - 2 files changed, 42 insertions(+), 11 deletions(-) - -diff --git a/numpy/core/records.py b/numpy/core/records.py -index 4a99553..4ce3fe9 100644 ---- a/numpy/core/records.py -+++ b/numpy/core/records.py -@@ -448,12 +448,14 @@ def __getattribute__(self, attr): - - # At this point obj will always be a recarray, since (see - # PyArray_GetField) the type of obj is inherited. Next, if obj.dtype is -- # non-structured, convert it to an ndarray. If obj is structured leave -- # it as a recarray, but make sure to convert to the same dtype.type (eg -- # to preserve numpy.record type if present), since nested structured -- # fields do not inherit type. -+ # non-structured, convert it to an ndarray. Then if obj is structured -+ # with void type convert it to the same dtype.type (eg to preserve -+ # numpy.record type if present), since nested structured fields do not -+ # inherit type. Don't do this for non-void structures though. - if obj.dtype.fields: -- return obj.view(dtype=(self.dtype.type, obj.dtype.fields)) -+ if issubclass(obj.dtype.type, nt.void): -+ return obj.view(dtype=(self.dtype.type, obj.dtype)) -+ return obj - else: - return obj.view(ndarray) - -@@ -463,8 +465,9 @@ def __getattribute__(self, attr): - # Thus, you can't create attributes on-the-fly that are field names. - def __setattr__(self, attr, val): - -- # Automatically convert (void) dtypes to records. -- if attr == 'dtype' and issubclass(val.type, nt.void): -+ # Automatically convert (void) structured types to records -+ # (but not non-void structures, subarrays, or non-structured voids) -+ if attr == 'dtype' and issubclass(val.type, nt.void) and val.fields: - val = sb.dtype((record, val)) - - newattr = attr not in self.__dict__ -@@ -499,7 +502,9 @@ def __getitem__(self, indx): - # we might also be returning a single element - if isinstance(obj, ndarray): - if obj.dtype.fields: -- return obj.view(dtype=(self.dtype.type, obj.dtype.fields)) -+ if issubclass(obj.dtype.type, nt.void): -+ return obj.view(dtype=(self.dtype.type, obj.dtype)) -+ return obj - else: - return obj.view(type=ndarray) - else: -@@ -519,11 +524,14 @@ def __repr__(self): - # If this is a full record array (has numpy.record dtype), - # or if it has a scalar (non-void) dtype with no records, - # represent it using the rec.array function. Since rec.array -- # converts dtype to a numpy.record for us, use only dtype.descr, -- # not repr(dtype). -+ # converts dtype to a numpy.record for us, convert back -+ # to non-record before printing -+ plain_dtype = self.dtype -+ if plain_dtype.type is record: -+ plain_dtype = sb.dtype((nt.void, plain_dtype)) - lf = '\n'+' '*len("rec.array(") - return ('rec.array(%s, %sdtype=%s)' % -- (lst, lf, repr(self.dtype.descr))) -+ (lst, lf, plain_dtype)) - else: - # otherwise represent it using np.array plus a view - # This should only happen if the user is playing -diff --git a/numpy/core/tests/test_records.py b/numpy/core/tests/test_records.py -index 7a18f29..290bc4f 100644 ---- a/numpy/core/tests/test_records.py -+++ b/numpy/core/tests/test_records.py -@@ -121,6 +121,23 @@ def test_recarray_views(self): - assert_equal(type(rv), np.recarray) - assert_equal(rv.dtype.type, np.record) - -+ # check that accessing nested structures keep record type, but -+ # not for subarrays, non-void structures, non-structured voids -+ test_dtype = [('a', 'f4,f4'), ('b', 'V8'), ('c', ('f4',2)), -+ ('d', ('i8', 'i4,i4'))] -+ r = np.rec.array([((1,1), b'11111111', [1,1], 1), -+ ((1,1), b'11111111', [1,1], 1)], dtype=test_dtype) -+ assert_equal(r.a.dtype.type, np.record) -+ assert_equal(r.b.dtype.type, np.void) -+ assert_equal(r.c.dtype.type, np.float32) -+ assert_equal(r.d.dtype.type, np.int64) -+ # check the same, but for views -+ r = np.rec.array(np.ones(4, dtype='i4,i4')) -+ assert_equal(r.view('f4,f4').dtype.type, np.record) -+ assert_equal(r.view(('i4',2)).dtype.type, np.int32) -+ assert_equal(r.view('V8').dtype.type, np.void) -+ assert_equal(r.view(('i8', 'i4,i4')).dtype.type, np.int64) -+ - #check that we can undo the view - arrs = [np.ones(4, dtype='f4,i4'), np.ones(4, dtype='f8')] - for arr in arrs: -@@ -135,6 +152,12 @@ def test_recarray_repr(self): - a = np.array(np.ones(4, dtype='f8')) - assert_(repr(np.rec.array(a)).startswith('rec.array')) - -+ # check that the 'np.record' part of the dtype isn't shown -+ a = np.rec.array(np.ones(3, dtype='i4,i4')) -+ assert_equal(repr(a).find('numpy.record'), -1) -+ a = np.rec.array(np.ones(3, dtype='i4')) -+ assert_(repr(a).find('dtype=int32') != -1) -+ - def test_recarray_from_names(self): - ra = np.rec.array([ - (1, 'abc', 3.7000002861022949, 0), diff --git a/testing/py-numpy/numpy-1.10.1-backport-2.patch b/testing/py-numpy/numpy-1.10.1-backport-2.patch deleted file mode 100644 index 9c33704f8e..0000000000 --- a/testing/py-numpy/numpy-1.10.1-backport-2.patch +++ /dev/null @@ -1,73 +0,0 @@ -From 0d25dc4175e00cdaf9545e8b1b1a5b879cf67248 Mon Sep 17 00:00:00 2001 -From: Ethan Kruse <eakruse@uw.edu> -Date: Mon, 19 Oct 2015 13:29:01 -0700 -Subject: [PATCH 1/2] Potential fix for #6462 - ---- - numpy/lib/function_base.py | 2 +- - 1 file changed, 1 insertion(+), 1 deletion(-) - -diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py -index 555d083..fef69df 100644 ---- a/numpy/lib/function_base.py -+++ b/numpy/lib/function_base.py -@@ -3339,7 +3339,7 @@ def _median(a, axis=None, out=None, overwrite_input=False): - indexer[axis] = slice(index-1, index+1) - - # Check if the array contains any nan's -- if np.issubdtype(a.dtype, np.inexact): -+ if np.issubdtype(a.dtype, np.inexact) and sz > 0: - # warn and return nans like mean would - rout = mean(part[indexer], axis=axis, out=out) - part = np.rollaxis(part, axis, part.ndim) - -From 59d859fb2160950ac93267d7461ad952145c8724 Mon Sep 17 00:00:00 2001 -From: Ethan Kruse <eakruse@uw.edu> -Date: Tue, 20 Oct 2015 11:40:49 -0700 -Subject: [PATCH 2/2] Added tests for median of empty arrays - ---- - numpy/lib/tests/test_function_base.py | 30 ++++++++++++++++++++++++++++++ - 1 file changed, 30 insertions(+) - -diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py -index 4516c92..aa41c1f 100644 ---- a/numpy/lib/tests/test_function_base.py -+++ b/numpy/lib/tests/test_function_base.py -@@ -2597,6 +2597,36 @@ def test_nan_behavior(self): - assert_equal(np.median(a, (0, 2)), b) - assert_equal(len(w), 1) - -+ def test_empty(self): -+ # empty arrays -+ a = np.array([], dtype=float) -+ with warnings.catch_warnings(record=True) as w: -+ warnings.filterwarnings('always', '', RuntimeWarning) -+ assert_equal(np.median(a), np.nan) -+ assert_(w[0].category is RuntimeWarning) -+ -+ # multiple dimensions -+ a = np.array([], dtype=float, ndmin=3) -+ # no axis -+ with warnings.catch_warnings(record=True) as w: -+ warnings.filterwarnings('always', '', RuntimeWarning) -+ assert_equal(np.median(a), np.nan) -+ assert_(w[0].category is RuntimeWarning) -+ -+ # axis 0 and 1 -+ b = np.array([], dtype=float, ndmin=2) -+ with warnings.catch_warnings(record=True) as w: -+ warnings.filterwarnings('always', '', RuntimeWarning) -+ assert_equal(np.median(a, axis=0), b) -+ assert_equal(np.median(a, axis=1), b) -+ -+ # axis 2 -+ b = np.array(np.nan, dtype=float, ndmin=2) -+ with warnings.catch_warnings(record=True) as w: -+ warnings.filterwarnings('always', '', RuntimeWarning) -+ assert_equal(np.median(a, axis=2), b) -+ assert_(w[0].category is RuntimeWarning) -+ - def test_object(self): - o = np.arange(7.) - assert_(type(np.median(o.astype(object))), float) |