diff options
author | Natanael Copa <ncopa@alpinelinux.org> | 2010-05-21 14:35:04 +0000 |
---|---|---|
committer | Natanael Copa <ncopa@alpinelinux.org> | 2010-05-21 14:35:04 +0000 |
commit | 6450177f2f95119cb3e8332b1863d92cef0ae90a (patch) | |
tree | 71274ab0e6c904bb56137debe3e064686a751bc5 /main/qemu/kqemu.c | |
parent | b324d6e706466a723e1735e8f789f6e8351557b6 (diff) | |
download | aports-6450177f2f95119cb3e8332b1863d92cef0ae90a.tar.bz2 aports-6450177f2f95119cb3e8332b1863d92cef0ae90a.tar.xz |
main/qemu: moved from testing
Diffstat (limited to 'main/qemu/kqemu.c')
-rw-r--r-- | main/qemu/kqemu.c | 997 |
1 files changed, 997 insertions, 0 deletions
diff --git a/main/qemu/kqemu.c b/main/qemu/kqemu.c new file mode 100644 index 0000000000..035d310ab9 --- /dev/null +++ b/main/qemu/kqemu.c @@ -0,0 +1,997 @@ +/* + * KQEMU support + * + * Copyright (c) 2005-2008 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA + */ +#include "config.h" +#ifdef _WIN32 +#define WIN32_LEAN_AND_MEAN +#include <windows.h> +#include <winioctl.h> +#else +#include <sys/types.h> +#include <sys/mman.h> +#include <sys/ioctl.h> +#endif +#ifdef HOST_SOLARIS +#include <sys/ioccom.h> +#endif +#include <stdlib.h> +#include <stdio.h> +#include <stdarg.h> +#include <string.h> +#include <errno.h> +#include <unistd.h> +#include <inttypes.h> + +#include "cpu.h" +#include "exec-all.h" +#include "qemu-common.h" + +#ifdef USE_KQEMU + +#define DEBUG +//#define PROFILE + + +#ifdef DEBUG +# define LOG_INT(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__) +# define LOG_INT_STATE(env) log_cpu_state_mask(CPU_LOG_INT, (env), 0) +#else +# define LOG_INT(...) do { } while (0) +# define LOG_INT_STATE(env) do { } while (0) +#endif + +#include <unistd.h> +#include <fcntl.h> +#include "kqemu.h" + +#ifdef _WIN32 +#define KQEMU_DEVICE "\\\\.\\kqemu" +#else +#define KQEMU_DEVICE "/dev/kqemu" +#endif + +static void qpi_init(void); + +#ifdef _WIN32 +#define KQEMU_INVALID_FD INVALID_HANDLE_VALUE +HANDLE kqemu_fd = KQEMU_INVALID_FD; +#define kqemu_closefd(x) CloseHandle(x) +#else +#define KQEMU_INVALID_FD -1 +int kqemu_fd = KQEMU_INVALID_FD; +#define kqemu_closefd(x) close(x) +#endif + +/* 0 = not allowed + 1 = user kqemu + 2 = kernel kqemu +*/ +int kqemu_allowed = 1; +uint64_t *pages_to_flush; +unsigned int nb_pages_to_flush; +uint64_t *ram_pages_to_update; +unsigned int nb_ram_pages_to_update; +uint64_t *modified_ram_pages; +unsigned int nb_modified_ram_pages; +uint8_t *modified_ram_pages_table; +int qpi_io_memory; +uint32_t kqemu_comm_base; /* physical address of the QPI communication page */ + +#define cpuid(index, eax, ecx, edx) \ + asm volatile ("cpuid" \ + : "=a" (eax), "=c" (ecx), "=d" (edx) \ + : "0" (index)) + +#ifdef __x86_64__ +static int is_cpuid_supported(void) +{ + return 1; +} +#else +static int is_cpuid_supported(void) +{ + int v0, v1; + asm volatile ("pushf\n" + "popl %0\n" + "movl %0, %1\n" + "xorl $0x00200000, %0\n" + "pushl %0\n" + "popf\n" + "pushf\n" + "popl %0\n" + : "=a" (v0), "=d" (v1) + : + : "cc"); + return (v0 != v1); +} +#endif + +static void kqemu_update_cpuid(CPUState *env) +{ + int critical_features_mask, features, ext_features, ext_features_mask; + uint32_t eax, ecx, edx; + + /* the following features are kept identical on the host and + target cpus because they are important for user code. Strictly + speaking, only SSE really matters because the OS must support + it if the user code uses it. */ + critical_features_mask = + CPUID_CMOV | CPUID_CX8 | + CPUID_FXSR | CPUID_MMX | CPUID_SSE | + CPUID_SSE2 | CPUID_SEP; + ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR; + if (!is_cpuid_supported()) { + features = 0; + ext_features = 0; + } else { + cpuid(1, eax, ecx, edx); + features = edx; + ext_features = ecx; + } +#ifdef __x86_64__ + /* NOTE: on x86_64 CPUs, SYSENTER is not supported in + compatibility mode, so in order to have the best performances + it is better not to use it */ + features &= ~CPUID_SEP; +#endif + env->cpuid_features = (env->cpuid_features & ~critical_features_mask) | + (features & critical_features_mask); + env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) | + (ext_features & ext_features_mask); + /* XXX: we could update more of the target CPUID state so that the + non accelerated code sees exactly the same CPU features as the + accelerated code */ +} + +int kqemu_init(CPUState *env) +{ + struct kqemu_init kinit; + int ret, version; +#ifdef _WIN32 + DWORD temp; +#endif + + if (!kqemu_allowed) + return -1; + +#ifdef _WIN32 + kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ, + FILE_SHARE_READ | FILE_SHARE_WRITE, + NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, + NULL); + if (kqemu_fd == KQEMU_INVALID_FD) { + fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %lu\n", + KQEMU_DEVICE, GetLastError()); + return -1; + } +#else + kqemu_fd = open(KQEMU_DEVICE, O_RDWR); + if (kqemu_fd == KQEMU_INVALID_FD) { + fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n", + KQEMU_DEVICE, strerror(errno)); + return -1; + } +#endif + version = 0; +#ifdef _WIN32 + DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0, + &version, sizeof(version), &temp, NULL); +#else + ioctl(kqemu_fd, KQEMU_GET_VERSION, &version); +#endif + if (version != KQEMU_VERSION) { + fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n", + version, KQEMU_VERSION); + goto fail; + } + + pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH * + sizeof(uint64_t)); + if (!pages_to_flush) + goto fail; + + ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE * + sizeof(uint64_t)); + if (!ram_pages_to_update) + goto fail; + + modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES * + sizeof(uint64_t)); + if (!modified_ram_pages) + goto fail; + modified_ram_pages_table = qemu_mallocz(phys_ram_size >> TARGET_PAGE_BITS); + if (!modified_ram_pages_table) + goto fail; + + memset(&kinit, 0, sizeof(kinit)); /* set the paddings to zero */ + kinit.ram_base = phys_ram_base; + kinit.ram_size = phys_ram_size; + kinit.ram_dirty = phys_ram_dirty; + kinit.pages_to_flush = pages_to_flush; + kinit.ram_pages_to_update = ram_pages_to_update; + kinit.modified_ram_pages = modified_ram_pages; +#ifdef _WIN32 + ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &kinit, sizeof(kinit), + NULL, 0, &temp, NULL) == TRUE ? 0 : -1; +#else + ret = ioctl(kqemu_fd, KQEMU_INIT, &kinit); +#endif + if (ret < 0) { + fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret); + fail: + kqemu_closefd(kqemu_fd); + kqemu_fd = KQEMU_INVALID_FD; + return -1; + } + kqemu_update_cpuid(env); + env->kqemu_enabled = kqemu_allowed; + nb_pages_to_flush = 0; + nb_ram_pages_to_update = 0; + + qpi_init(); + return 0; +} + +void kqemu_flush_page(CPUState *env, target_ulong addr) +{ + LOG_INT("kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr); + if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH) + nb_pages_to_flush = KQEMU_FLUSH_ALL; + else + pages_to_flush[nb_pages_to_flush++] = addr; +} + +void kqemu_flush(CPUState *env, int global) +{ + LOG_INT("kqemu_flush:\n"); + nb_pages_to_flush = KQEMU_FLUSH_ALL; +} + +void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr) +{ + LOG_INT("kqemu_set_notdirty: addr=%08lx\n", + (unsigned long)ram_addr); + /* we only track transitions to dirty state */ + if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff) + return; + if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE) + nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL; + else + ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr; +} + +static void kqemu_reset_modified_ram_pages(void) +{ + int i; + unsigned long page_index; + + for(i = 0; i < nb_modified_ram_pages; i++) { + page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS; + modified_ram_pages_table[page_index] = 0; + } + nb_modified_ram_pages = 0; +} + +void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr) +{ + unsigned long page_index; + int ret; +#ifdef _WIN32 + DWORD temp; +#endif + + page_index = ram_addr >> TARGET_PAGE_BITS; + if (!modified_ram_pages_table[page_index]) { +#if 0 + printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr); +#endif + modified_ram_pages_table[page_index] = 1; + modified_ram_pages[nb_modified_ram_pages++] = ram_addr; + if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) { + /* flush */ +#ifdef _WIN32 + ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES, + &nb_modified_ram_pages, + sizeof(nb_modified_ram_pages), + NULL, 0, &temp, NULL); +#else + ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES, + &nb_modified_ram_pages); +#endif + kqemu_reset_modified_ram_pages(); + } + } +} + +void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, + ram_addr_t phys_offset) +{ + struct kqemu_phys_mem kphys_mem1, *kphys_mem = &kphys_mem1; + uint64_t end; + int ret, io_index; + + end = (start_addr + size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; + start_addr &= TARGET_PAGE_MASK; + kphys_mem->phys_addr = start_addr; + kphys_mem->size = end - start_addr; + kphys_mem->ram_addr = phys_offset & TARGET_PAGE_MASK; + io_index = phys_offset & ~TARGET_PAGE_MASK; + switch(io_index) { + case IO_MEM_RAM: + kphys_mem->io_index = KQEMU_IO_MEM_RAM; + break; + case IO_MEM_ROM: + kphys_mem->io_index = KQEMU_IO_MEM_ROM; + break; + default: + if (qpi_io_memory == io_index) { + kphys_mem->io_index = KQEMU_IO_MEM_COMM; + } else { + kphys_mem->io_index = KQEMU_IO_MEM_UNASSIGNED; + } + break; + } +#ifdef _WIN32 + { + DWORD temp; + ret = DeviceIoControl(kqemu_fd, KQEMU_SET_PHYS_MEM, + kphys_mem, sizeof(*kphys_mem), + NULL, 0, &temp, NULL) == TRUE ? 0 : -1; + } +#else + ret = ioctl(kqemu_fd, KQEMU_SET_PHYS_MEM, kphys_mem); +#endif + if (ret < 0) { + fprintf(stderr, "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx\n", + ret, start_addr, + (unsigned long)size, (unsigned long)phys_offset); + } +} + +struct fpstate { + uint16_t fpuc; + uint16_t dummy1; + uint16_t fpus; + uint16_t dummy2; + uint16_t fptag; + uint16_t dummy3; + + uint32_t fpip; + uint32_t fpcs; + uint32_t fpoo; + uint32_t fpos; + uint8_t fpregs1[8 * 10]; +}; + +struct fpxstate { + uint16_t fpuc; + uint16_t fpus; + uint16_t fptag; + uint16_t fop; + uint32_t fpuip; + uint16_t cs_sel; + uint16_t dummy0; + uint32_t fpudp; + uint16_t ds_sel; + uint16_t dummy1; + uint32_t mxcsr; + uint32_t mxcsr_mask; + uint8_t fpregs1[8 * 16]; + uint8_t xmm_regs[16 * 16]; + uint8_t dummy2[96]; +}; + +static struct fpxstate fpx1 __attribute__((aligned(16))); + +static void restore_native_fp_frstor(CPUState *env) +{ + int fptag, i, j; + struct fpstate fp1, *fp = &fp1; + + fp->fpuc = env->fpuc; + fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; + fptag = 0; + for (i=7; i>=0; i--) { + fptag <<= 2; + if (env->fptags[i]) { + fptag |= 3; + } else { + /* the FPU automatically computes it */ + } + } + fp->fptag = fptag; + j = env->fpstt; + for(i = 0;i < 8; i++) { + memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10); + j = (j + 1) & 7; + } + asm volatile ("frstor %0" : "=m" (*fp)); +} + +static void save_native_fp_fsave(CPUState *env) +{ + int fptag, i, j; + uint16_t fpuc; + struct fpstate fp1, *fp = &fp1; + + asm volatile ("fsave %0" : : "m" (*fp)); + env->fpuc = fp->fpuc; + env->fpstt = (fp->fpus >> 11) & 7; + env->fpus = fp->fpus & ~0x3800; + fptag = fp->fptag; + for(i = 0;i < 8; i++) { + env->fptags[i] = ((fptag & 3) == 3); + fptag >>= 2; + } + j = env->fpstt; + for(i = 0;i < 8; i++) { + memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10); + j = (j + 1) & 7; + } + /* we must restore the default rounding state */ + fpuc = 0x037f | (env->fpuc & (3 << 10)); + asm volatile("fldcw %0" : : "m" (fpuc)); +} + +static void restore_native_fp_fxrstor(CPUState *env) +{ + struct fpxstate *fp = &fpx1; + int i, j, fptag; + + fp->fpuc = env->fpuc; + fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; + fptag = 0; + for(i = 0; i < 8; i++) + fptag |= (env->fptags[i] << i); + fp->fptag = fptag ^ 0xff; + + j = env->fpstt; + for(i = 0;i < 8; i++) { + memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10); + j = (j + 1) & 7; + } + if (env->cpuid_features & CPUID_SSE) { + fp->mxcsr = env->mxcsr; + /* XXX: check if DAZ is not available */ + fp->mxcsr_mask = 0xffff; + memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16); + } + asm volatile ("fxrstor %0" : "=m" (*fp)); +} + +static void save_native_fp_fxsave(CPUState *env) +{ + struct fpxstate *fp = &fpx1; + int fptag, i, j; + uint16_t fpuc; + + asm volatile ("fxsave %0" : : "m" (*fp)); + env->fpuc = fp->fpuc; + env->fpstt = (fp->fpus >> 11) & 7; + env->fpus = fp->fpus & ~0x3800; + fptag = fp->fptag ^ 0xff; + for(i = 0;i < 8; i++) { + env->fptags[i] = (fptag >> i) & 1; + } + j = env->fpstt; + for(i = 0;i < 8; i++) { + memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10); + j = (j + 1) & 7; + } + if (env->cpuid_features & CPUID_SSE) { + env->mxcsr = fp->mxcsr; + memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16); + } + + /* we must restore the default rounding state */ + asm volatile ("fninit"); + fpuc = 0x037f | (env->fpuc & (3 << 10)); + asm volatile("fldcw %0" : : "m" (fpuc)); +} + +static int do_syscall(CPUState *env, + struct kqemu_cpu_state *kenv) +{ + int selector; + + selector = (env->star >> 32) & 0xffff; +#ifdef TARGET_X86_64 + if (env->hflags & HF_LMA_MASK) { + int code64; + + env->regs[R_ECX] = kenv->next_eip; + env->regs[11] = env->eflags; + + code64 = env->hflags & HF_CS64_MASK; + + cpu_x86_set_cpl(env, 0); + cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc, + 0, 0xffffffff, + DESC_G_MASK | DESC_P_MASK | + DESC_S_MASK | + DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK); + cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc, + 0, 0xffffffff, + DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | + DESC_S_MASK | + DESC_W_MASK | DESC_A_MASK); + env->eflags &= ~env->fmask; + if (code64) + env->eip = env->lstar; + else + env->eip = env->cstar; + } else +#endif + { + env->regs[R_ECX] = (uint32_t)kenv->next_eip; + + cpu_x86_set_cpl(env, 0); + cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc, + 0, 0xffffffff, + DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | + DESC_S_MASK | + DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); + cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc, + 0, 0xffffffff, + DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | + DESC_S_MASK | + DESC_W_MASK | DESC_A_MASK); + env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK); + env->eip = (uint32_t)env->star; + } + return 2; +} + +#ifdef CONFIG_PROFILER + +#define PC_REC_SIZE 1 +#define PC_REC_HASH_BITS 16 +#define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS) + +typedef struct PCRecord { + unsigned long pc; + int64_t count; + struct PCRecord *next; +} PCRecord; + +static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE]; +static int nb_pc_records; + +static void kqemu_record_pc(unsigned long pc) +{ + unsigned long h; + PCRecord **pr, *r; + + h = pc / PC_REC_SIZE; + h = h ^ (h >> PC_REC_HASH_BITS); + h &= (PC_REC_HASH_SIZE - 1); + pr = &pc_rec_hash[h]; + for(;;) { + r = *pr; + if (r == NULL) + break; + if (r->pc == pc) { + r->count++; + return; + } + pr = &r->next; + } + r = malloc(sizeof(PCRecord)); + r->count = 1; + r->pc = pc; + r->next = NULL; + *pr = r; + nb_pc_records++; +} + +static int pc_rec_cmp(const void *p1, const void *p2) +{ + PCRecord *r1 = *(PCRecord **)p1; + PCRecord *r2 = *(PCRecord **)p2; + if (r1->count < r2->count) + return 1; + else if (r1->count == r2->count) + return 0; + else + return -1; +} + +static void kqemu_record_flush(void) +{ + PCRecord *r, *r_next; + int h; + + for(h = 0; h < PC_REC_HASH_SIZE; h++) { + for(r = pc_rec_hash[h]; r != NULL; r = r_next) { + r_next = r->next; + free(r); + } + pc_rec_hash[h] = NULL; + } + nb_pc_records = 0; +} + +void kqemu_record_dump(void) +{ + PCRecord **pr, *r; + int i, h; + FILE *f; + int64_t total, sum; + + pr = malloc(sizeof(PCRecord *) * nb_pc_records); + i = 0; + total = 0; + for(h = 0; h < PC_REC_HASH_SIZE; h++) { + for(r = pc_rec_hash[h]; r != NULL; r = r->next) { + pr[i++] = r; + total += r->count; + } + } + qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp); + + f = fopen("/tmp/kqemu.stats", "w"); + if (!f) { + perror("/tmp/kqemu.stats"); + exit(1); + } + fprintf(f, "total: %" PRId64 "\n", total); + sum = 0; + for(i = 0; i < nb_pc_records; i++) { + r = pr[i]; + sum += r->count; + fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n", + r->pc, + r->count, + (double)r->count / (double)total * 100.0, + (double)sum / (double)total * 100.0); + } + fclose(f); + free(pr); + + kqemu_record_flush(); +} +#endif + +static inline void kqemu_load_seg(struct kqemu_segment_cache *ksc, + const SegmentCache *sc) +{ + ksc->selector = sc->selector; + ksc->flags = sc->flags; + ksc->limit = sc->limit; + ksc->base = sc->base; +} + +static inline void kqemu_save_seg(SegmentCache *sc, + const struct kqemu_segment_cache *ksc) +{ + sc->selector = ksc->selector; + sc->flags = ksc->flags; + sc->limit = ksc->limit; + sc->base = ksc->base; +} + +int kqemu_cpu_exec(CPUState *env) +{ + struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state; + int ret, cpl, i; +#ifdef CONFIG_PROFILER + int64_t ti; +#endif +#ifdef _WIN32 + DWORD temp; +#endif + +#ifdef CONFIG_PROFILER + ti = profile_getclock(); +#endif + LOG_INT("kqemu: cpu_exec: enter\n"); + LOG_INT_STATE(env); + for(i = 0; i < CPU_NB_REGS; i++) + kenv->regs[i] = env->regs[i]; + kenv->eip = env->eip; + kenv->eflags = env->eflags; + for(i = 0; i < 6; i++) + kqemu_load_seg(&kenv->segs[i], &env->segs[i]); + kqemu_load_seg(&kenv->ldt, &env->ldt); + kqemu_load_seg(&kenv->tr, &env->tr); + kqemu_load_seg(&kenv->gdt, &env->gdt); + kqemu_load_seg(&kenv->idt, &env->idt); + kenv->cr0 = env->cr[0]; + kenv->cr2 = env->cr[2]; + kenv->cr3 = env->cr[3]; + kenv->cr4 = env->cr[4]; + kenv->a20_mask = env->a20_mask; + kenv->efer = env->efer; + kenv->tsc_offset = 0; + kenv->star = env->star; + kenv->sysenter_cs = env->sysenter_cs; + kenv->sysenter_esp = env->sysenter_esp; + kenv->sysenter_eip = env->sysenter_eip; +#ifdef TARGET_X86_64 + kenv->lstar = env->lstar; + kenv->cstar = env->cstar; + kenv->fmask = env->fmask; + kenv->kernelgsbase = env->kernelgsbase; +#endif + if (env->dr[7] & 0xff) { + kenv->dr7 = env->dr[7]; + kenv->dr0 = env->dr[0]; + kenv->dr1 = env->dr[1]; + kenv->dr2 = env->dr[2]; + kenv->dr3 = env->dr[3]; + } else { + kenv->dr7 = 0; + } + kenv->dr6 = env->dr[6]; + cpl = (env->hflags & HF_CPL_MASK); + kenv->cpl = cpl; + kenv->nb_pages_to_flush = nb_pages_to_flush; + kenv->user_only = (env->kqemu_enabled == 1); + kenv->nb_ram_pages_to_update = nb_ram_pages_to_update; + nb_ram_pages_to_update = 0; + kenv->nb_modified_ram_pages = nb_modified_ram_pages; + + kqemu_reset_modified_ram_pages(); + + if (env->cpuid_features & CPUID_FXSR) + restore_native_fp_fxrstor(env); + else + restore_native_fp_frstor(env); + +#ifdef _WIN32 + if (DeviceIoControl(kqemu_fd, KQEMU_EXEC, + kenv, sizeof(struct kqemu_cpu_state), + kenv, sizeof(struct kqemu_cpu_state), + &temp, NULL)) { + ret = kenv->retval; + } else { + ret = -1; + } +#else + ioctl(kqemu_fd, KQEMU_EXEC, kenv); + ret = kenv->retval; +#endif + if (env->cpuid_features & CPUID_FXSR) + save_native_fp_fxsave(env); + else + save_native_fp_fsave(env); + + for(i = 0; i < CPU_NB_REGS; i++) + env->regs[i] = kenv->regs[i]; + env->eip = kenv->eip; + env->eflags = kenv->eflags; + for(i = 0; i < 6; i++) + kqemu_save_seg(&env->segs[i], &kenv->segs[i]); + cpu_x86_set_cpl(env, kenv->cpl); + kqemu_save_seg(&env->ldt, &kenv->ldt); + env->cr[0] = kenv->cr0; + env->cr[4] = kenv->cr4; + env->cr[3] = kenv->cr3; + env->cr[2] = kenv->cr2; + env->dr[6] = kenv->dr6; +#ifdef TARGET_X86_64 + env->kernelgsbase = kenv->kernelgsbase; +#endif + + /* flush pages as indicated by kqemu */ + if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) { + tlb_flush(env, 1); + } else { + for(i = 0; i < kenv->nb_pages_to_flush; i++) { + tlb_flush_page(env, pages_to_flush[i]); + } + } + nb_pages_to_flush = 0; + +#ifdef CONFIG_PROFILER + kqemu_time += profile_getclock() - ti; + kqemu_exec_count++; +#endif + + if (kenv->nb_ram_pages_to_update > 0) { + cpu_tlb_update_dirty(env); + } + + if (kenv->nb_modified_ram_pages > 0) { + for(i = 0; i < kenv->nb_modified_ram_pages; i++) { + unsigned long addr; + addr = modified_ram_pages[i]; + tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0); + } + } + + /* restore the hidden flags */ + { + unsigned int new_hflags; +#ifdef TARGET_X86_64 + if ((env->hflags & HF_LMA_MASK) && + (env->segs[R_CS].flags & DESC_L_MASK)) { + /* long mode */ + new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; + } else +#endif + { + /* legacy / compatibility case */ + new_hflags = (env->segs[R_CS].flags & DESC_B_MASK) + >> (DESC_B_SHIFT - HF_CS32_SHIFT); + new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK) + >> (DESC_B_SHIFT - HF_SS32_SHIFT); + if (!(env->cr[0] & CR0_PE_MASK) || + (env->eflags & VM_MASK) || + !(env->hflags & HF_CS32_MASK)) { + /* XXX: try to avoid this test. The problem comes from the + fact that is real mode or vm86 mode we only modify the + 'base' and 'selector' fields of the segment cache to go + faster. A solution may be to force addseg to one in + translate-i386.c. */ + new_hflags |= HF_ADDSEG_MASK; + } else { + new_hflags |= ((env->segs[R_DS].base | + env->segs[R_ES].base | + env->segs[R_SS].base) != 0) << + HF_ADDSEG_SHIFT; + } + } + env->hflags = (env->hflags & + ~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) | + new_hflags; + } + /* update FPU flags */ + env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | + ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); + if (env->cr[4] & CR4_OSFXSR_MASK) + env->hflags |= HF_OSFXSR_MASK; + else + env->hflags &= ~HF_OSFXSR_MASK; + + LOG_INT("kqemu: kqemu_cpu_exec: ret=0x%x\n", ret); + if (ret == KQEMU_RET_SYSCALL) { + /* syscall instruction */ + return do_syscall(env, kenv); + } else + if ((ret & 0xff00) == KQEMU_RET_INT) { + env->exception_index = ret & 0xff; + env->error_code = 0; + env->exception_is_int = 1; + env->exception_next_eip = kenv->next_eip; +#ifdef CONFIG_PROFILER + kqemu_ret_int_count++; +#endif + LOG_INT("kqemu: interrupt v=%02x:\n", env->exception_index); + LOG_INT_STATE(env); + return 1; + } else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) { + env->exception_index = ret & 0xff; + env->error_code = kenv->error_code; + env->exception_is_int = 0; + env->exception_next_eip = 0; +#ifdef CONFIG_PROFILER + kqemu_ret_excp_count++; +#endif + LOG_INT("kqemu: exception v=%02x e=%04x:\n", + env->exception_index, env->error_code); + LOG_INT_STATE(env); + return 1; + } else if (ret == KQEMU_RET_INTR) { +#ifdef CONFIG_PROFILER + kqemu_ret_intr_count++; +#endif + LOG_INT_STATE(env); + return 0; + } else if (ret == KQEMU_RET_SOFTMMU) { +#ifdef CONFIG_PROFILER + { + unsigned long pc = env->eip + env->segs[R_CS].base; + kqemu_record_pc(pc); + } +#endif + LOG_INT_STATE(env); + return 2; + } else { + cpu_dump_state(env, stderr, fprintf, 0); + fprintf(stderr, "Unsupported return value: 0x%x\n", ret); + exit(1); + } + return 0; +} + +void kqemu_cpu_interrupt(CPUState *env) +{ +#if defined(_WIN32) + /* cancelling the I/O request causes KQEMU to finish executing the + current block and successfully returning. */ + CancelIo(kqemu_fd); +#endif +} + +/* + QEMU paravirtualization interface. The current interface only + allows to modify the IF and IOPL flags when running in + kqemu. + + At this point it is not very satisfactory. I leave it for reference + as it adds little complexity. +*/ + +#define QPI_COMM_PAGE_PHYS_ADDR 0xff000000 + +static uint32_t qpi_mem_readb(void *opaque, target_phys_addr_t addr) +{ + return 0; +} + +static uint32_t qpi_mem_readw(void *opaque, target_phys_addr_t addr) +{ + return 0; +} + +static void qpi_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) +{ +} + +static void qpi_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) +{ +} + +static uint32_t qpi_mem_readl(void *opaque, target_phys_addr_t addr) +{ + CPUState *env; + + env = cpu_single_env; + if (!env) + return 0; + return env->eflags & (IF_MASK | IOPL_MASK); +} + +/* Note: after writing to this address, the guest code must make sure + it is exiting the current TB. pushf/popf can be used for that + purpose. */ +static void qpi_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) +{ + CPUState *env; + + env = cpu_single_env; + if (!env) + return; + env->eflags = (env->eflags & ~(IF_MASK | IOPL_MASK)) | + (val & (IF_MASK | IOPL_MASK)); +} + +static CPUReadMemoryFunc *qpi_mem_read[3] = { + qpi_mem_readb, + qpi_mem_readw, + qpi_mem_readl, +}; + +static CPUWriteMemoryFunc *qpi_mem_write[3] = { + qpi_mem_writeb, + qpi_mem_writew, + qpi_mem_writel, +}; + +static void qpi_init(void) +{ + kqemu_comm_base = 0xff000000 | 1; + qpi_io_memory = cpu_register_io_memory(0, + qpi_mem_read, + qpi_mem_write, NULL); + cpu_register_physical_memory(kqemu_comm_base & ~0xfff, + 0x1000, qpi_io_memory); +} +#endif |