aboutsummaryrefslogtreecommitdiffstats
path: root/testing/py-numpy
diff options
context:
space:
mode:
authorNatanael Copa <ncopa@alpinelinux.org>2016-03-22 11:12:18 +0000
committerNatanael Copa <ncopa@alpinelinux.org>2016-03-22 11:12:18 +0000
commitce1b9f834595b6c8853588d9fbb58a1988320936 (patch)
tree500bc95120b14522ed9d79acd8a241abd18dfb9d /testing/py-numpy
parentb7491665a1eeed31172a79283db5caf12b328161 (diff)
downloadaports-ce1b9f834595b6c8853588d9fbb58a1988320936.tar.bz2
aports-ce1b9f834595b6c8853588d9fbb58a1988320936.tar.xz
testing/py-numpy: remove unused patches
Diffstat (limited to 'testing/py-numpy')
-rw-r--r--testing/py-numpy/numpy-1.10.1-backport-1.patch127
-rw-r--r--testing/py-numpy/numpy-1.10.1-backport-2.patch73
2 files changed, 0 insertions, 200 deletions
diff --git a/testing/py-numpy/numpy-1.10.1-backport-1.patch b/testing/py-numpy/numpy-1.10.1-backport-1.patch
deleted file mode 100644
index 77a3c01037..0000000000
--- a/testing/py-numpy/numpy-1.10.1-backport-1.patch
+++ /dev/null
@@ -1,127 +0,0 @@
-From 3a816a4db9b498eb64eb837fdcca0fa8ddbe063e Mon Sep 17 00:00:00 2001
-From: Allan Haldane <allan.haldane@gmail.com>
-Date: Sat, 17 Oct 2015 14:00:36 -0400
-Subject: [PATCH] BUG: recarrays viewed as subarrays don't convert to np.record
- type
-
-Record array views were updated in #5943 to return np.record dtype
-where possible, but forgot about the case of sub-arrays.
-
-That's fixed here, so accessing subarray fields by attribute or index
-works sensibly, as well as viewing a record array as a subarray dtype,
-and printing subarrays.
-
-This also happens to fix #6459, since it affects the same lines.
-
-Fixes #6497 #6459
----
- numpy/core/records.py | 30 +++++++++++++++++++-----------
- numpy/core/tests/test_records.py | 23 +++++++++++++++++++++++
- 2 files changed, 42 insertions(+), 11 deletions(-)
-
-diff --git a/numpy/core/records.py b/numpy/core/records.py
-index 4a99553..4ce3fe9 100644
---- a/numpy/core/records.py
-+++ b/numpy/core/records.py
-@@ -448,12 +448,14 @@ def __getattribute__(self, attr):
-
- # At this point obj will always be a recarray, since (see
- # PyArray_GetField) the type of obj is inherited. Next, if obj.dtype is
-- # non-structured, convert it to an ndarray. If obj is structured leave
-- # it as a recarray, but make sure to convert to the same dtype.type (eg
-- # to preserve numpy.record type if present), since nested structured
-- # fields do not inherit type.
-+ # non-structured, convert it to an ndarray. Then if obj is structured
-+ # with void type convert it to the same dtype.type (eg to preserve
-+ # numpy.record type if present), since nested structured fields do not
-+ # inherit type. Don't do this for non-void structures though.
- if obj.dtype.fields:
-- return obj.view(dtype=(self.dtype.type, obj.dtype.fields))
-+ if issubclass(obj.dtype.type, nt.void):
-+ return obj.view(dtype=(self.dtype.type, obj.dtype))
-+ return obj
- else:
- return obj.view(ndarray)
-
-@@ -463,8 +465,9 @@ def __getattribute__(self, attr):
- # Thus, you can't create attributes on-the-fly that are field names.
- def __setattr__(self, attr, val):
-
-- # Automatically convert (void) dtypes to records.
-- if attr == 'dtype' and issubclass(val.type, nt.void):
-+ # Automatically convert (void) structured types to records
-+ # (but not non-void structures, subarrays, or non-structured voids)
-+ if attr == 'dtype' and issubclass(val.type, nt.void) and val.fields:
- val = sb.dtype((record, val))
-
- newattr = attr not in self.__dict__
-@@ -499,7 +502,9 @@ def __getitem__(self, indx):
- # we might also be returning a single element
- if isinstance(obj, ndarray):
- if obj.dtype.fields:
-- return obj.view(dtype=(self.dtype.type, obj.dtype.fields))
-+ if issubclass(obj.dtype.type, nt.void):
-+ return obj.view(dtype=(self.dtype.type, obj.dtype))
-+ return obj
- else:
- return obj.view(type=ndarray)
- else:
-@@ -519,11 +524,14 @@ def __repr__(self):
- # If this is a full record array (has numpy.record dtype),
- # or if it has a scalar (non-void) dtype with no records,
- # represent it using the rec.array function. Since rec.array
-- # converts dtype to a numpy.record for us, use only dtype.descr,
-- # not repr(dtype).
-+ # converts dtype to a numpy.record for us, convert back
-+ # to non-record before printing
-+ plain_dtype = self.dtype
-+ if plain_dtype.type is record:
-+ plain_dtype = sb.dtype((nt.void, plain_dtype))
- lf = '\n'+' '*len("rec.array(")
- return ('rec.array(%s, %sdtype=%s)' %
-- (lst, lf, repr(self.dtype.descr)))
-+ (lst, lf, plain_dtype))
- else:
- # otherwise represent it using np.array plus a view
- # This should only happen if the user is playing
-diff --git a/numpy/core/tests/test_records.py b/numpy/core/tests/test_records.py
-index 7a18f29..290bc4f 100644
---- a/numpy/core/tests/test_records.py
-+++ b/numpy/core/tests/test_records.py
-@@ -121,6 +121,23 @@ def test_recarray_views(self):
- assert_equal(type(rv), np.recarray)
- assert_equal(rv.dtype.type, np.record)
-
-+ # check that accessing nested structures keep record type, but
-+ # not for subarrays, non-void structures, non-structured voids
-+ test_dtype = [('a', 'f4,f4'), ('b', 'V8'), ('c', ('f4',2)),
-+ ('d', ('i8', 'i4,i4'))]
-+ r = np.rec.array([((1,1), b'11111111', [1,1], 1),
-+ ((1,1), b'11111111', [1,1], 1)], dtype=test_dtype)
-+ assert_equal(r.a.dtype.type, np.record)
-+ assert_equal(r.b.dtype.type, np.void)
-+ assert_equal(r.c.dtype.type, np.float32)
-+ assert_equal(r.d.dtype.type, np.int64)
-+ # check the same, but for views
-+ r = np.rec.array(np.ones(4, dtype='i4,i4'))
-+ assert_equal(r.view('f4,f4').dtype.type, np.record)
-+ assert_equal(r.view(('i4',2)).dtype.type, np.int32)
-+ assert_equal(r.view('V8').dtype.type, np.void)
-+ assert_equal(r.view(('i8', 'i4,i4')).dtype.type, np.int64)
-+
- #check that we can undo the view
- arrs = [np.ones(4, dtype='f4,i4'), np.ones(4, dtype='f8')]
- for arr in arrs:
-@@ -135,6 +152,12 @@ def test_recarray_repr(self):
- a = np.array(np.ones(4, dtype='f8'))
- assert_(repr(np.rec.array(a)).startswith('rec.array'))
-
-+ # check that the 'np.record' part of the dtype isn't shown
-+ a = np.rec.array(np.ones(3, dtype='i4,i4'))
-+ assert_equal(repr(a).find('numpy.record'), -1)
-+ a = np.rec.array(np.ones(3, dtype='i4'))
-+ assert_(repr(a).find('dtype=int32') != -1)
-+
- def test_recarray_from_names(self):
- ra = np.rec.array([
- (1, 'abc', 3.7000002861022949, 0),
diff --git a/testing/py-numpy/numpy-1.10.1-backport-2.patch b/testing/py-numpy/numpy-1.10.1-backport-2.patch
deleted file mode 100644
index 9c33704f8e..0000000000
--- a/testing/py-numpy/numpy-1.10.1-backport-2.patch
+++ /dev/null
@@ -1,73 +0,0 @@
-From 0d25dc4175e00cdaf9545e8b1b1a5b879cf67248 Mon Sep 17 00:00:00 2001
-From: Ethan Kruse <eakruse@uw.edu>
-Date: Mon, 19 Oct 2015 13:29:01 -0700
-Subject: [PATCH 1/2] Potential fix for #6462
-
----
- numpy/lib/function_base.py | 2 +-
- 1 file changed, 1 insertion(+), 1 deletion(-)
-
-diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
-index 555d083..fef69df 100644
---- a/numpy/lib/function_base.py
-+++ b/numpy/lib/function_base.py
-@@ -3339,7 +3339,7 @@ def _median(a, axis=None, out=None, overwrite_input=False):
- indexer[axis] = slice(index-1, index+1)
-
- # Check if the array contains any nan's
-- if np.issubdtype(a.dtype, np.inexact):
-+ if np.issubdtype(a.dtype, np.inexact) and sz > 0:
- # warn and return nans like mean would
- rout = mean(part[indexer], axis=axis, out=out)
- part = np.rollaxis(part, axis, part.ndim)
-
-From 59d859fb2160950ac93267d7461ad952145c8724 Mon Sep 17 00:00:00 2001
-From: Ethan Kruse <eakruse@uw.edu>
-Date: Tue, 20 Oct 2015 11:40:49 -0700
-Subject: [PATCH 2/2] Added tests for median of empty arrays
-
----
- numpy/lib/tests/test_function_base.py | 30 ++++++++++++++++++++++++++++++
- 1 file changed, 30 insertions(+)
-
-diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
-index 4516c92..aa41c1f 100644
---- a/numpy/lib/tests/test_function_base.py
-+++ b/numpy/lib/tests/test_function_base.py
-@@ -2597,6 +2597,36 @@ def test_nan_behavior(self):
- assert_equal(np.median(a, (0, 2)), b)
- assert_equal(len(w), 1)
-
-+ def test_empty(self):
-+ # empty arrays
-+ a = np.array([], dtype=float)
-+ with warnings.catch_warnings(record=True) as w:
-+ warnings.filterwarnings('always', '', RuntimeWarning)
-+ assert_equal(np.median(a), np.nan)
-+ assert_(w[0].category is RuntimeWarning)
-+
-+ # multiple dimensions
-+ a = np.array([], dtype=float, ndmin=3)
-+ # no axis
-+ with warnings.catch_warnings(record=True) as w:
-+ warnings.filterwarnings('always', '', RuntimeWarning)
-+ assert_equal(np.median(a), np.nan)
-+ assert_(w[0].category is RuntimeWarning)
-+
-+ # axis 0 and 1
-+ b = np.array([], dtype=float, ndmin=2)
-+ with warnings.catch_warnings(record=True) as w:
-+ warnings.filterwarnings('always', '', RuntimeWarning)
-+ assert_equal(np.median(a, axis=0), b)
-+ assert_equal(np.median(a, axis=1), b)
-+
-+ # axis 2
-+ b = np.array(np.nan, dtype=float, ndmin=2)
-+ with warnings.catch_warnings(record=True) as w:
-+ warnings.filterwarnings('always', '', RuntimeWarning)
-+ assert_equal(np.median(a, axis=2), b)
-+ assert_(w[0].category is RuntimeWarning)
-+
- def test_object(self):
- o = np.arange(7.)
- assert_(type(np.median(o.astype(object))), float)