aboutsummaryrefslogtreecommitdiffstats
path: root/main/dahdi-linux-hardened/dahdi-zaphfc.patch
diff options
context:
space:
mode:
Diffstat (limited to 'main/dahdi-linux-hardened/dahdi-zaphfc.patch')
-rw-r--r--main/dahdi-linux-hardened/dahdi-zaphfc.patch1429
1 files changed, 1429 insertions, 0 deletions
diff --git a/main/dahdi-linux-hardened/dahdi-zaphfc.patch b/main/dahdi-linux-hardened/dahdi-zaphfc.patch
new file mode 100644
index 0000000000..931c5b5cf6
--- /dev/null
+++ b/main/dahdi-linux-hardened/dahdi-zaphfc.patch
@@ -0,0 +1,1429 @@
+Index: dahdi-linux-2.1.0/drivers/dahdi/zaphfc.c
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ dahdi-linux-2.1.0/drivers/dahdi/zaphfc.c 2008-12-10 12:46:14.000000000 +0200
+@@ -0,0 +1,1129 @@
++/*
++ * zaphfc.c - Zaptel driver for HFC-S PCI A based ISDN BRI cards
++ *
++ * kernel module inspired by HFC PCI ISDN4Linux and Zaptel drivers
++ *
++ * Copyright (C) 2002, 2003, 2004, 2005 Junghanns.NET GmbH
++ *
++ * Klaus-Peter Junghanns <kpj@junghanns.net>
++ *
++ * This program is free software and may be modified and
++ * distributed under the terms of the GNU Public License.
++ *
++ */
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#ifdef RTAITIMING
++#include <asm/io.h>
++#include <rtai.h>
++#include <rtai_sched.h>
++#include <rtai_fifos.h>
++#endif
++#include <linux/pci.h>
++#include <linux/init.h>
++#include <linux/interrupt.h>
++#include <linux/delay.h>
++#include <dahdi/kernel.h>
++#include "zaphfc.h"
++
++#include <linux/moduleparam.h>
++
++#if CONFIG_PCI
++
++#define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
++#define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
++
++typedef struct {
++ int vendor_id;
++ int device_id;
++ char *vendor_name;
++ char *card_name;
++} PCI_ENTRY;
++
++static const PCI_ENTRY id_list[] =
++{
++ {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_2BD0, "CCD/Billion/Asuscom", "2BD0"},
++ {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B000, "Billion", "B000"},
++ {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B006, "Billion", "B006"},
++ {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B007, "Billion", "B007"},
++ {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B008, "Billion", "B008"},
++ {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B009, "Billion", "B009"},
++ {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00A, "Billion", "B00A"},
++ {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00B, "Billion", "B00B"},
++ {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00C, "Billion", "B00C"},
++ {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B100, "Seyeon", "B100"},
++ {PCI_VENDOR_ID_ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1, "Abocom/Magitek", "2BD1"},
++ {PCI_VENDOR_ID_ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675, "Asuscom/Askey", "675"},
++ {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT, "German telekom", "T-Concept"},
++ {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_A1T, "German telekom", "A1T"},
++ {PCI_VENDOR_ID_ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575, "Motorola MC145575", "MC145575"},
++ {PCI_VENDOR_ID_ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0, "Zoltrix", "2BD0"},
++ {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E,"Digi International", "Digi DataFire Micro V IOM2 (Europe)"},
++ {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_E,"Digi International", "Digi DataFire Micro V (Europe)"},
++ {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A,"Digi International", "Digi DataFire Micro V IOM2 (North America)"},
++ {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_A,"Digi International", "Digi DataFire Micro V (North America)"},
++ {0x182d, 0x3069,"Sitecom","Isdn 128 PCI"},
++ {0, 0, NULL, NULL},
++};
++
++static struct hfc_card *hfc_dev_list = NULL;
++static int hfc_dev_count = 0;
++static int modes = 0; // all TE
++static int debug = 0;
++static struct pci_dev *multi_hfc = NULL;
++static DEFINE_SPINLOCK(registerlock);
++
++void hfc_shutdownCard(struct hfc_card *hfctmp) {
++ unsigned long flags;
++
++ if (hfctmp == NULL) {
++ return;
++ }
++
++ if (hfctmp->pci_io == NULL) {
++ return;
++ }
++
++ spin_lock_irqsave(&hfctmp->lock,flags);
++
++ printk(KERN_INFO "zaphfc: shutting down card at %p.\n",hfctmp->pci_io);
++
++ /* Clear interrupt mask */
++ hfctmp->regs.int_m2 = 0;
++ hfc_outb(hfctmp, hfc_INT_M2, hfctmp->regs.int_m2);
++
++ /* Reset pending interrupts */
++ hfc_inb(hfctmp, hfc_INT_S1);
++
++ /* Wait for interrupts that might still be pending */
++ spin_unlock_irqrestore(&hfctmp->lock, flags);
++ set_current_state(TASK_UNINTERRUPTIBLE);
++ schedule_timeout((30 * HZ) / 1000); // wait 30 ms
++ spin_lock_irqsave(&hfctmp->lock,flags);
++
++ /* Remove interrupt handler */
++ if (hfctmp->irq) {
++ free_irq(hfctmp->irq, hfctmp);
++ }
++
++ /* Soft-reset the card */
++ hfc_outb(hfctmp, hfc_CIRM, hfc_CIRM_RESET); // softreset on
++
++ spin_unlock_irqrestore(&hfctmp->lock, flags);
++ set_current_state(TASK_UNINTERRUPTIBLE);
++ schedule_timeout((30 * HZ) / 1000); // wait 30 ms
++ spin_lock_irqsave(&hfctmp->lock,flags);
++
++ hfc_outb(hfctmp,hfc_CIRM,0); // softreset off
++
++ pci_write_config_word(hfctmp->pcidev, PCI_COMMAND, 0); // disable memio and bustmaster
++
++ if (hfctmp->fifomem != NULL) {
++ kfree(hfctmp->fifomem);
++ }
++ iounmap((void *) hfctmp->pci_io);
++ hfctmp->pci_io = NULL;
++ if (hfctmp->pcidev != NULL) {
++ pci_disable_device(hfctmp->pcidev);
++ }
++ spin_unlock_irqrestore(&hfctmp->lock,flags);
++ if (hfctmp->ztdev != NULL) {
++ dahdi_unregister(&hfctmp->ztdev->span);
++ kfree(hfctmp->ztdev);
++ printk(KERN_INFO "unregistered from DAHDI.\n");
++ }
++}
++
++void hfc_resetCard(struct hfc_card *hfctmp) {
++ unsigned long flags;
++
++ spin_lock_irqsave(&hfctmp->lock,flags);
++ pci_write_config_word(hfctmp->pcidev, PCI_COMMAND, PCI_COMMAND_MEMORY); // enable memio
++ hfctmp->regs.int_m2 = 0;
++ hfc_outb(hfctmp, hfc_INT_M2, hfctmp->regs.int_m2);
++
++// printk(KERN_INFO "zaphfc: resetting card.\n");
++ pci_set_master(hfctmp->pcidev);
++ hfc_outb(hfctmp, hfc_CIRM, hfc_CIRM_RESET); // softreset on
++ spin_unlock_irqrestore(&hfctmp->lock, flags);
++
++ set_current_state(TASK_UNINTERRUPTIBLE);
++ schedule_timeout((30 * HZ) / 1000); // wait 30 ms
++ hfc_outb(hfctmp, hfc_CIRM, 0); // softreset off
++
++ set_current_state(TASK_UNINTERRUPTIBLE);
++ schedule_timeout((20 * HZ) / 1000); // wait 20 ms
++ if (hfc_inb(hfctmp,hfc_STATUS) & hfc_STATUS_PCI_PROC) {
++ printk(KERN_WARNING "zaphfc: hfc busy.\n");
++ }
++
++// hfctmp->regs.fifo_en = hfc_FIFOEN_D | hfc_FIFOEN_B1 | hfc_FIFOEN_B2;
++// hfctmp->regs.fifo_en = hfc_FIFOEN_D; /* only D fifos enabled */
++ hfctmp->regs.fifo_en = 0; /* no fifos enabled */
++ hfc_outb(hfctmp, hfc_FIFO_EN, hfctmp->regs.fifo_en);
++
++ hfctmp->regs.trm = 2;
++ hfc_outb(hfctmp, hfc_TRM, hfctmp->regs.trm);
++
++ if (hfctmp->regs.nt_mode == 1) {
++ hfc_outb(hfctmp, hfc_CLKDEL, CLKDEL_NT); /* ST-Bit delay for NT-Mode */
++ } else {
++ hfc_outb(hfctmp, hfc_CLKDEL, CLKDEL_TE); /* ST-Bit delay for TE-Mode */
++ }
++ hfctmp->regs.sctrl_e = hfc_SCTRL_E_AUTO_AWAKE;
++ hfc_outb(hfctmp, hfc_SCTRL_E, hfctmp->regs.sctrl_e); /* S/T Auto awake */
++ hfctmp->regs.bswapped = 0; /* no exchange */
++
++ hfctmp->regs.ctmt = hfc_CTMT_TRANSB1 | hfc_CTMT_TRANSB2; // all bchans are transparent , no freaking hdlc
++ hfc_outb(hfctmp, hfc_CTMT, hfctmp->regs.ctmt);
++
++ hfctmp->regs.int_m1 = 0;
++ hfc_outb(hfctmp, hfc_INT_M1, hfctmp->regs.int_m1);
++
++#ifdef RTAITIMING
++ hfctmp->regs.int_m2 = 0;
++#else
++ hfctmp->regs.int_m2 = hfc_M2_PROC_TRANS;
++#endif
++ hfc_outb(hfctmp, hfc_INT_M2, hfctmp->regs.int_m2);
++
++ /* Clear already pending ints */
++ hfc_inb(hfctmp, hfc_INT_S1);
++
++ if (hfctmp->regs.nt_mode == 1) {
++ hfctmp->regs.sctrl = 3 | hfc_SCTRL_NONE_CAP | hfc_SCTRL_MODE_NT; /* set tx_lo mode, error in datasheet ! */
++ } else {
++ hfctmp->regs.sctrl = 3 | hfc_SCTRL_NONE_CAP | hfc_SCTRL_MODE_TE; /* set tx_lo mode, error in datasheet ! */
++ }
++
++ hfctmp->regs.mst_mode = hfc_MST_MODE_MASTER; /* HFC Master Mode */
++ hfc_outb(hfctmp, hfc_MST_MODE, hfctmp->regs.mst_mode);
++
++ hfc_outb(hfctmp, hfc_SCTRL, hfctmp->regs.sctrl);
++ hfctmp->regs.sctrl_r = 3;
++ hfc_outb(hfctmp, hfc_SCTRL_R, hfctmp->regs.sctrl_r);
++
++ hfctmp->regs.connect = 0;
++ hfc_outb(hfctmp, hfc_CONNECT, hfctmp->regs.connect);
++
++ hfc_outb(hfctmp, hfc_CIRM, 0x80 | 0x40); // bit order
++
++ /* Finally enable IRQ output */
++#ifndef RTAITIMING
++ hfctmp->regs.int_m2 |= hfc_M2_IRQ_ENABLE;
++ hfc_outb(hfctmp, hfc_INT_M2, hfctmp->regs.int_m2);
++#endif
++
++ /* clear pending ints */
++ hfc_inb(hfctmp, hfc_INT_S1);
++ hfc_inb(hfctmp, hfc_INT_S2);
++}
++
++void hfc_registerCard(struct hfc_card *hfccard) {
++ spin_lock(&registerlock);
++ if (hfccard != NULL) {
++ hfccard->cardno = hfc_dev_count++;
++ hfccard->next = hfc_dev_list;
++ hfc_dev_list = hfccard;
++ }
++ spin_unlock(&registerlock);
++}
++
++static void hfc_btrans(struct hfc_card *hfctmp, char whichB) {
++ // we are called with irqs disabled from the irq handler
++ int count, maxlen, total;
++ unsigned char *f1, *f2;
++ unsigned short *z1, *z2, newz1;
++ int freebytes;
++
++ if (whichB == 1) {
++ f1 = (char *)(hfctmp->fifos + hfc_FIFO_B1TX_F1);
++ f2 = (char *)(hfctmp->fifos + hfc_FIFO_B1TX_F2);
++ z1 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_B1TX_Z1 + (*f1 * 4));
++ z2 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_B1TX_Z2 + (*f1 * 4));
++ } else {
++ f1 = (char *)(hfctmp->fifos + hfc_FIFO_B2TX_F1);
++ f2 = (char *)(hfctmp->fifos + hfc_FIFO_B2TX_F2);
++ z1 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_B2TX_Z1 + (*f1 * 4));
++ z2 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_B2TX_Z2 + (*f1 * 4));
++ }
++
++ freebytes = *z2 - *z1;
++ if (freebytes <= 0) {
++ freebytes += hfc_B_FIFO_SIZE;
++ }
++ count = DAHDI_CHUNKSIZE;
++
++ total = count;
++ if (freebytes < count) {
++ hfctmp->clicks++;
++ /* only spit out this warning once per second to not make things worse! */
++ if (hfctmp->clicks > 100) {
++ printk(KERN_CRIT "zaphfc: bchan tx fifo full, dropping audio! (z1=%d, z2=%d)\n",*z1,*z2);
++ hfctmp->clicks = 0;
++ }
++ return;
++ }
++
++ maxlen = (hfc_B_FIFO_SIZE + hfc_B_SUB_VAL) - *z1;
++ if (maxlen > count) {
++ maxlen = count;
++ }
++ newz1 = *z1 + total;
++ if (newz1 >= (hfc_B_FIFO_SIZE + hfc_B_SUB_VAL)) { newz1 -= hfc_B_FIFO_SIZE; }
++
++ if (whichB == 1) {
++ memcpy((char *)(hfctmp->fifos + hfc_FIFO_B1TX_ZOFF + *z1),hfctmp->ztdev->chans[0].writechunk, maxlen);
++ } else {
++ memcpy((char *)(hfctmp->fifos + hfc_FIFO_B2TX_ZOFF + *z1),hfctmp->ztdev->chans[1].writechunk, maxlen);
++ }
++
++ count -= maxlen;
++ if (count > 0) {
++ // Buffer wrap
++ if (whichB == 1) {
++ memcpy((char *)(hfctmp->fifos + hfc_FIFO_B1TX_ZOFF + hfc_B_SUB_VAL),hfctmp->ztdev->chans[0].writechunk+maxlen, count);
++ } else {
++ memcpy((char *)(hfctmp->fifos + hfc_FIFO_B2TX_ZOFF + hfc_B_SUB_VAL),hfctmp->ztdev->chans[1].writechunk+maxlen, count);
++ }
++ }
++
++ *z1 = newz1; /* send it now */
++
++// if (count > 0) printk(KERN_CRIT "zaphfc: bchan tx fifo (f1=%d, f2=%d, z1=%d, z2=%d)\n",(*f1) & hfc_FMASK,(*f2) & hfc_FMASK, *z1, *z2);
++ return;
++}
++
++static void hfc_brec(struct hfc_card *hfctmp, char whichB) {
++ // we are called with irqs disabled from the irq handler
++ int count, maxlen, drop;
++ volatile unsigned char *f1, *f2;
++ volatile unsigned short *z1, *z2, newz2;
++ int bytes = 0;
++
++ if (whichB == 1) {
++ f1 = (char *)(hfctmp->fifos + hfc_FIFO_B1RX_F1);
++ f2 = (char *)(hfctmp->fifos + hfc_FIFO_B1RX_F2);
++ z1 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_B1RX_Z1 + (*f1 * 4));
++ z2 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_B1RX_Z2 + (*f1 * 4));
++ } else {
++ f1 = (char *)(hfctmp->fifos + hfc_FIFO_B2RX_F1);
++ f2 = (char *)(hfctmp->fifos + hfc_FIFO_B2RX_F2);
++ z1 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_B2RX_Z1 + (*f1 * 4));
++ z2 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_B2RX_Z2 + (*f1 * 4));
++ }
++
++ bytes = *z1 - *z2;
++ if (bytes < 0) {
++ bytes += hfc_B_FIFO_SIZE;
++ }
++ count = DAHDI_CHUNKSIZE;
++
++ if (bytes < DAHDI_CHUNKSIZE) {
++#ifndef RTAITIMING
++ printk(KERN_CRIT "zaphfc: bchan rx fifo not enough bytes to receive! (z1=%d, z2=%d, wanted %d got %d), probably a buffer overrun.\n",*z1,*z2,DAHDI_CHUNKSIZE,bytes);
++#endif
++ return;
++ }
++
++ /* allowing the buffering of hfc_BCHAN_BUFFER bytes of audio data works around irq jitter */
++ if (bytes > hfc_BCHAN_BUFFER + DAHDI_CHUNKSIZE) {
++ /* if the system is too slow to handle it, we will have to drop it all (except 1 DAHDI chunk) */
++ drop = bytes - DAHDI_CHUNKSIZE;
++ hfctmp->clicks++;
++ /* only spit out this warning once per second to not make things worse! */
++ if (hfctmp->clicks > 100) {
++ printk(KERN_CRIT "zaphfc: dropped audio (z1=%d, z2=%d, wanted %d got %d, dropped %d).\n",*z1,*z2,count,bytes,drop);
++ hfctmp->clicks = 0;
++ }
++ /* hm, we are processing the b chan data tooooo slowly... let's drop the lost audio */
++ newz2 = *z2 + drop;
++ if (newz2 >= (hfc_B_FIFO_SIZE + hfc_B_SUB_VAL)) {
++ newz2 -= hfc_B_FIFO_SIZE;
++ }
++ *z2 = newz2;
++ }
++
++
++ maxlen = (hfc_B_FIFO_SIZE + hfc_B_SUB_VAL) - *z2;
++ if (maxlen > count) {
++ maxlen = count;
++ }
++ if (whichB == 1) {
++ memcpy(hfctmp->ztdev->chans[0].readchunk,(char *)(hfctmp->fifos + hfc_FIFO_B1RX_ZOFF + *z2), maxlen);
++ } else {
++ memcpy(hfctmp->ztdev->chans[1].readchunk,(char *)(hfctmp->fifos + hfc_FIFO_B2RX_ZOFF + *z2), maxlen);
++ }
++ newz2 = *z2 + count;
++ if (newz2 >= (hfc_B_FIFO_SIZE + hfc_B_SUB_VAL)) {
++ newz2 -= hfc_B_FIFO_SIZE;
++ }
++ *z2 = newz2;
++
++ count -= maxlen;
++ if (count > 0) {
++ // Buffer wrap
++ if (whichB == 1) {
++ z2 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_B1RX_Z2 + (*f1 * 4));
++ memcpy(hfctmp->ztdev->chans[0].readchunk + maxlen,(char *)(hfctmp->fifos + hfc_FIFO_B1RX_ZOFF + hfc_B_SUB_VAL), count);
++ } else {
++ z2 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_B2RX_Z2 + (*f1 * 4));
++ memcpy(hfctmp->ztdev->chans[1].readchunk + maxlen,(char *)(hfctmp->fifos + hfc_FIFO_B2RX_ZOFF + hfc_B_SUB_VAL), count);
++ }
++ newz2 = *z2 + count;
++ if (newz2 >= (hfc_B_FIFO_SIZE + hfc_B_SUB_VAL)) {
++ newz2 -= hfc_B_FIFO_SIZE;
++ }
++ }
++
++
++ if (whichB == 1) {
++ dahdi_ec_chunk(&hfctmp->ztdev->chans[0], hfctmp->ztdev->chans[0].readchunk, hfctmp->ztdev->chans[0].writechunk);
++ } else {
++ dahdi_ec_chunk(&hfctmp->ztdev->chans[1], hfctmp->ztdev->chans[1].readchunk, hfctmp->ztdev->chans[1].writechunk);
++ }
++ return;
++}
++
++
++static void hfc_dtrans(struct hfc_card *hfctmp) {
++ // we are called with irqs disabled from the irq handler
++ int x;
++ int count, maxlen, total;
++ unsigned char *f1, *f2, newf1;
++ unsigned short *z1, *z2, newz1;
++ int frames, freebytes;
++
++ if (hfctmp->ztdev->chans[2].bytes2transmit == 0) {
++ return;
++ }
++
++ f1 = (char *)(hfctmp->fifos + hfc_FIFO_DTX_F1);
++ f2 = (char *)(hfctmp->fifos + hfc_FIFO_DTX_F2);
++ z1 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_DTX_Z1 + (*f1 * 4));
++ z2 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_DTX_Z2 + (*f1 * 4));
++
++ frames = (*f1 - *f2) & hfc_FMASK;
++ if (frames < 0) {
++ frames += hfc_MAX_DFRAMES + 1;
++ }
++
++ if (frames >= hfc_MAX_DFRAMES) {
++ printk(KERN_CRIT "zaphfc: dchan tx fifo total number of frames exceeded!\n");
++ return;
++ }
++
++ freebytes = *z2 - *z1;
++ if (freebytes <= 0) {
++ freebytes += hfc_D_FIFO_SIZE;
++ }
++ count = hfctmp->ztdev->chans[2].bytes2transmit;
++
++ total = count;
++ if (freebytes < count) {
++ printk(KERN_CRIT "zaphfc: dchan tx fifo not enough free bytes! (z1=%d, z2=%d)\n",*z1,*z2);
++ return;
++ }
++
++ newz1 = (*z1 + count) & hfc_ZMASK;
++ newf1 = ((*f1 + 1) & hfc_MAX_DFRAMES) | (hfc_MAX_DFRAMES + 1); // next frame
++
++ if (count > 0) {
++ if (debug) {
++ printk(KERN_CRIT "zaphfc: card %d TX [ ", hfctmp->cardno);
++ for (x=0; x<count; x++) {
++ printk("%#2x ",hfctmp->dtransbuf[x]);
++ }
++ if (hfctmp->ztdev->chans[2].eoftx == 1) {
++ printk("] %d bytes\n", count);
++ } else {
++ printk("..] %d bytes\n", count);
++ }
++ }
++ maxlen = hfc_D_FIFO_SIZE - *z1;
++ if (maxlen > count) {
++ maxlen = count;
++ }
++ memcpy((char *)(hfctmp->fifos + hfc_FIFO_DTX_ZOFF + *z1),hfctmp->ztdev->chans[2].writechunk, maxlen);
++ count -= maxlen;
++ if (count > 0) {
++ memcpy((char *)(hfctmp->fifos + hfc_FIFO_DTX_ZOFF),(char *)(hfctmp->ztdev->chans[2].writechunk + maxlen), count);
++ }
++ }
++
++ *z1 = newz1;
++
++ if (hfctmp->ztdev->chans[2].eoftx == 1) {
++ *f1 = newf1;
++ z1 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_DTX_Z1 + (*f1 * 4));
++ *z1 = newz1;
++ hfctmp->ztdev->chans[2].eoftx = 0;
++ }
++// printk(KERN_CRIT "zaphfc: dchan tx fifo (f1=%d, f2=%d, z1=%d, z2=%d)\n",(*f1) & hfc_FMASK,(*f2) & hfc_FMASK, *z1, *z2);
++ return;
++}
++
++/* receive a complete hdlc frame, skip broken or short frames */
++static void hfc_drec(struct hfc_card *hfctmp) {
++ int count=0, maxlen=0, framelen=0;
++ unsigned char *f1, *f2, *crcstat;
++ unsigned short *z1, *z2, oldz2, newz2;
++
++ hfctmp->ztdev->chans[2].bytes2receive=0;
++ hfctmp->ztdev->chans[2].eofrx = 0;
++
++ /* put the received data into the DAHDI buffer
++ we'll call dahdi_receive() later when the timer fires. */
++ f1 = (char *)(hfctmp->fifos + hfc_FIFO_DRX_F1);
++ f2 = (char *)(hfctmp->fifos + hfc_FIFO_DRX_F2);
++
++ if (*f1 == *f2) return; /* nothing received, strange eh? */
++
++ z1 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_DRX_Z1 + (*f2 * 4));
++ z2 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_DRX_Z2 + (*f2 * 4));
++
++ /* calculate length of frame, including 2 bytes CRC and 1 byte STAT */
++ count = *z1 - *z2;
++
++ if (count < 0) {
++ count += hfc_D_FIFO_SIZE; /* ring buffer wrapped */
++ }
++ count++;
++ framelen = count;
++
++ crcstat = (char *)(hfctmp->fifos + hfc_FIFO_DRX_ZOFF + *z1);
++
++ if ((framelen < 4) || (*crcstat != 0x0)) {
++ /* the frame is too short for a valid HDLC frame or the CRC is borked */
++ printk(KERN_CRIT "zaphfc: empty HDLC frame or bad CRC received (framelen = %d, stat = %#x, card = %d).\n", framelen, *crcstat, hfctmp->cardno);
++ oldz2 = *z2;
++ *f2 = ((*f2 + 1) & hfc_MAX_DFRAMES) | (hfc_MAX_DFRAMES + 1); /* NEXT!!! */
++ // recalculate z2, because Z2 is a function of F2 Z2(F2) and we INCed F2!!!
++ z2 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_DRX_Z2 + (*f2 * 4));
++ *z2 = (oldz2 + framelen) & hfc_ZMASK;
++ hfctmp->drecinframe = 0;
++ hfctmp->regs.int_drec--;
++ /* skip short or broken frames */
++ hfctmp->ztdev->chans[2].bytes2receive = 0;
++ return;
++ }
++
++ count -= 1; /* strip STAT */
++ hfctmp->ztdev->chans[2].eofrx = 1;
++
++ if (count + *z2 <= hfc_D_FIFO_SIZE) {
++ maxlen = count;
++ } else {
++ maxlen = hfc_D_FIFO_SIZE - *z2;
++ }
++
++ /* copy first part */
++ memcpy(hfctmp->drecbuf, (char *)(hfctmp->fifos + hfc_FIFO_DRX_ZOFF + *z2), maxlen);
++ hfctmp->ztdev->chans[2].bytes2receive += maxlen;
++
++ count -= maxlen;
++ if (count > 0) {
++ /* ring buffer wrapped, copy rest from start of d fifo */
++ memcpy(hfctmp->drecbuf + maxlen, (char *)(hfctmp->fifos + hfc_FIFO_DRX_ZOFF), count);
++ hfctmp->ztdev->chans[2].bytes2receive += count;
++ }
++
++ /* frame read */
++ oldz2 = *z2;
++ newz2 = (oldz2 + framelen) & hfc_ZMASK;
++ *f2 = ((*f2 + 1) & hfc_MAX_DFRAMES) | (hfc_MAX_DFRAMES + 1); /* NEXT!!! */
++ /* recalculate z2, because Z2 is a function of F2 Z2(F2) and we INCed F2!!! */
++ z2 = (unsigned short *)(hfctmp->fifos + hfc_FIFO_DRX_Z2 + (*f2 * 4));
++ *z2 = newz2;
++ hfctmp->drecinframe = 0;
++ hfctmp->regs.int_drec--;
++}
++
++#ifndef RTAITIMING
++DAHDI_IRQ_HANDLER(hfc_interrupt) {
++ struct hfc_card *hfctmp = dev_id;
++ unsigned long flags = 0;
++ unsigned char stat;
++#else
++static void hfc_service(struct hfc_card *hfctmp) {
++#endif
++ struct dahdi_hfc *zthfc;
++ unsigned char s1, s2, l1state;
++ int x;
++
++ if (!hfctmp) {
++#ifndef RTAITIMING
++ return IRQ_NONE;
++#else
++ /* rtai */
++ return;
++#endif
++ }
++
++ if (!hfctmp->pci_io) {
++ printk(KERN_WARNING "%s: IO-mem disabled, cannot handle interrupt\n",
++ __FUNCTION__);
++#ifndef RTAITIMING
++ return IRQ_NONE;
++#else
++ /* rtai */
++ return;
++#endif
++ }
++
++ /* we assume a few things in this irq handler:
++ - the hfc-pci will only generate "timer" irqs (proc/non-proc)
++ - we need to use every 8th IRQ (to generate 1khz timing)
++ OR
++ - if we use rtai for timing the hfc-pci will not generate ANY irq,
++ instead rtai will call this "fake" irq with a 1khz realtime timer. :)
++ - rtai will directly service the card, not like it used to by triggering
++ the linux irq
++ */
++
++#ifndef RTAITIMING
++ spin_lock_irqsave(&hfctmp->lock, flags);
++ stat = hfc_inb(hfctmp, hfc_STATUS);
++
++ if ((stat & hfc_STATUS_ANYINT) == 0) {
++ // maybe we are sharing the irq
++ spin_unlock_irqrestore(&hfctmp->lock,flags);
++ return IRQ_NONE;
++ }
++#endif
++
++ s1 = hfc_inb(hfctmp, hfc_INT_S1);
++ s2 = hfc_inb(hfctmp, hfc_INT_S2);
++ if (s1 != 0) {
++ if (s1 & hfc_INTS_TIMER) {
++ // timer (bit 7)
++ // printk(KERN_CRIT "timer %d %d %d.\n", stat, s1, s2);
++ }
++ if (s1 & hfc_INTS_L1STATE) {
++ // state machine (bit 6)
++ // printk(KERN_CRIT "zaphfc: layer 1 state machine interrupt\n");
++ zthfc = hfctmp->ztdev;
++ l1state = hfc_inb(hfctmp,hfc_STATES) & hfc_STATES_STATE_MASK;
++ if (hfctmp->regs.nt_mode == 1) {
++ if (debug) {
++ printk(KERN_CRIT "zaphfc: card %d layer 1 state = G%d\n", hfctmp->cardno, l1state);
++ }
++ switch (l1state) {
++ case 3:
++#ifdef RTAITIMING
++ sprintf(zthfc->span.desc, "HFC-S PCI A ISDN card %d [NT] layer 1 ACTIVATED (G%d) [realtime]", hfctmp->cardno, l1state);
++#else
++ sprintf(zthfc->span.desc, "HFC-S PCI A ISDN card %d [NT] layer 1 ACTIVATED (G%d)", hfctmp->cardno, l1state);
++#endif
++ break;
++ default:
++#ifdef RTAITIMING
++ sprintf(zthfc->span.desc, "HFC-S PCI A ISDN card %d [NT] layer 1 DEACTIVATED (G%d) [realtime]", hfctmp->cardno, l1state);
++#else
++ sprintf(zthfc->span.desc, "HFC-S PCI A ISDN card %d [NT] layer 1 DEACTIVATED (G%d)", hfctmp->cardno, l1state);
++#endif
++ }
++ if (l1state == 2) {
++ hfc_outb(hfctmp, hfc_STATES, hfc_STATES_ACTIVATE | hfc_STATES_DO_ACTION | hfc_STATES_NT_G2_G3);
++ } else if (l1state == 3) {
++ // fix to G3 state (see specs)
++ hfc_outb(hfctmp, hfc_STATES, hfc_STATES_LOAD_STATE | 3);
++ }
++ } else {
++ if (debug) {
++ printk(KERN_CRIT "zaphfc: card %d layer 1 state = F%d\n", hfctmp->cardno, l1state);
++ }
++ switch (l1state) {
++ case 7:
++#ifdef RTAITIMING
++ sprintf(zthfc->span.desc, "HFC-S PCI A ISDN card %d [TE] layer 1 ACTIVATED (F%d) [realtime]", hfctmp->cardno, l1state);
++#else
++ sprintf(zthfc->span.desc, "HFC-S PCI A ISDN card %d [TE] layer 1 ACTIVATED (F%d)", hfctmp->cardno, l1state);
++#endif
++ break;
++ default:
++#ifdef RTAITIMING
++ sprintf(zthfc->span.desc, "HFC-S PCI A ISDN card %d [TE] layer 1 DEACTIVATED (F%d) [realtime]", hfctmp->cardno, l1state);
++#else
++ sprintf(zthfc->span.desc, "HFC-S PCI A ISDN card %d [TE] layer 1 DEACTIVATED (F%d)", hfctmp->cardno, l1state);
++#endif
++ }
++ if (l1state == 3) {
++ hfc_outb(hfctmp, hfc_STATES, hfc_STATES_DO_ACTION | hfc_STATES_ACTIVATE);
++ }
++ }
++
++ }
++ if (s1 & hfc_INTS_DREC) {
++ // D chan RX (bit 5)
++ hfctmp->regs.int_drec++;
++ // mr. zapata there is something for you!
++ // printk(KERN_CRIT "d chan rx\n");
++ }
++ if (s1 & hfc_INTS_B2REC) {
++ // B2 chan RX (bit 4)
++ }
++ if (s1 & hfc_INTS_B1REC) {
++ // B1 chan RX (bit 3)
++ }
++ if (s1 & hfc_INTS_DTRANS) {
++ // D chan TX (bit 2)
++// printk(KERN_CRIT "zaphfc: dchan frame transmitted.\n");
++ }
++ if (s1 & hfc_INTS_B2TRANS) {
++ // B2 chan TX (bit 1)
++ }
++ if (s1 & hfc_INTS_B1TRANS) {
++ // B1 chan TX (bit 0)
++ }
++ }
++#ifdef RTAITIMING
++ /* fake an irq */
++ s2 |= hfc_M2_PROC_TRANS;
++#endif
++ if (s2 != 0) {
++ if (s2 & hfc_M2_PMESEL) {
++ // kaboom irq (bit 7)
++ printk(KERN_CRIT "zaphfc: sync lost, pci performance too low. you might have some cpu throtteling enabled.\n");
++ }
++ if (s2 & hfc_M2_GCI_MON_REC) {
++ // RxR monitor channel (bit 2)
++ }
++ if (s2 & hfc_M2_GCI_I_CHG) {
++ // GCI I-change (bit 1)
++ }
++ if (s2 & hfc_M2_PROC_TRANS) {
++ // processing/non-processing transition (bit 0)
++ hfctmp->ticks++;
++#ifndef RTAITIMING
++ if (hfctmp->ticks > 7) {
++ // welcome to DAHDI timing :)
++#endif
++ hfctmp->ticks = 0;
++
++ if (hfctmp->ztdev->span.flags & DAHDI_FLAG_RUNNING) {
++ // clear dchan buffer
++ hfctmp->ztdev->chans[2].bytes2transmit = 0;
++ hfctmp->ztdev->chans[2].maxbytes2transmit = hfc_D_FIFO_SIZE;
++
++ dahdi_transmit(&(hfctmp->ztdev->span));
++
++ hfc_btrans(hfctmp,1);
++ hfc_btrans(hfctmp,2);
++ hfc_dtrans(hfctmp);
++ }
++
++ hfc_brec(hfctmp,1);
++ hfc_brec(hfctmp,2);
++ if (hfctmp->regs.int_drec > 0) {
++ // dchan data to read
++ hfc_drec(hfctmp);
++ if (hfctmp->ztdev->chans[2].bytes2receive > 0) {
++ if (debug) {
++ printk(KERN_CRIT "zaphfc: card %d RX [ ", hfctmp->cardno);
++ if (hfctmp->ztdev->chans[2].eofrx) {
++ /* dont output CRC == less user confusion */
++ for (x=0; x < hfctmp->ztdev->chans[2].bytes2receive - 2; x++) {
++ printk("%#2x ", hfctmp->drecbuf[x]);
++ }
++ printk("] %d bytes\n", hfctmp->ztdev->chans[2].bytes2receive - 2);
++ } else {
++ for (x=0; x < hfctmp->ztdev->chans[2].bytes2receive; x++) {
++ printk("%#2x ", hfctmp->drecbuf[x]);
++ }
++ printk("..] %d bytes\n", hfctmp->ztdev->chans[2].bytes2receive);
++ }
++ }
++ }
++ } else {
++ // hmm....ok, let DAHDI receive nothing
++ hfctmp->ztdev->chans[2].bytes2receive = 0;
++ }
++ if (hfctmp->ztdev->span.flags & DAHDI_FLAG_RUNNING) {
++ dahdi_receive(&(hfctmp->ztdev->span));
++ }
++
++#ifndef RTAITIMING
++ }
++#endif
++ }
++
++ }
++#ifndef RTAITIMING
++ spin_unlock_irqrestore(&hfctmp->lock,flags);
++ return IRQ_RETVAL(1);
++#endif
++}
++
++
++static int zthfc_open(struct dahdi_chan *chan) {
++ struct dahdi_hfc *zthfc = chan->pvt;
++ struct hfc_card *hfctmp = zthfc->card;
++
++ if (!hfctmp) {
++ return 0;
++ }
++ try_module_get(THIS_MODULE);
++ return 0;
++}
++
++static int zthfc_close(struct dahdi_chan *chan) {
++ struct dahdi_hfc *zthfc = chan->pvt;
++ struct hfc_card *hfctmp = zthfc->card;
++
++ if (!hfctmp) {
++ return 0;
++ }
++
++ module_put(THIS_MODULE);
++ return 0;
++}
++
++static int zthfc_rbsbits(struct dahdi_chan *chan, int bits) {
++ return 0;
++}
++
++static int zthfc_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data) {
++ switch(cmd) {
++ default:
++ return -ENOTTY;
++ }
++ return 0;
++}
++
++static int zthfc_startup(struct dahdi_span *span) {
++ struct dahdi_hfc *zthfc = span->pvt;
++ struct hfc_card *hfctmp = zthfc->card;
++ int alreadyrunning;
++
++ if (hfctmp == NULL) {
++ printk(KERN_INFO "zaphfc: no card for span at startup!\n");
++ }
++ alreadyrunning = span->flags & DAHDI_FLAG_RUNNING;
++
++ if (!alreadyrunning) {
++ span->chans[2]->flags &= ~DAHDI_FLAG_HDLC;
++ span->chans[2]->flags |= DAHDI_FLAG_BRIDCHAN;
++
++ span->flags |= DAHDI_FLAG_RUNNING;
++
++ hfctmp->ticks = -2;
++ hfctmp->clicks = 0;
++ hfctmp->regs.fifo_en = hfc_FIFOEN_D | hfc_FIFOEN_B1 | hfc_FIFOEN_B2;
++ hfc_outb(hfctmp, hfc_FIFO_EN, hfctmp->regs.fifo_en);
++ } else {
++ return 0;
++ }
++
++ // drivers, start engines!
++ hfc_outb(hfctmp, hfc_STATES, hfc_STATES_DO_ACTION | hfc_STATES_ACTIVATE);
++ return 0;
++}
++
++static int zthfc_shutdown(struct dahdi_span *span) {
++ return 0;
++}
++
++static int zthfc_maint(struct dahdi_span *span, int cmd) {
++ return 0;
++}
++
++static int zthfc_chanconfig(struct dahdi_chan *chan, int sigtype) {
++// printk(KERN_CRIT "chan_config sigtype=%d\n", sigtype);
++ return 0;
++}
++
++static int zthfc_spanconfig(struct dahdi_span *span, struct dahdi_lineconfig *lc) {
++ span->lineconfig = lc->lineconfig;
++ return 0;
++}
++
++static int zthfc_initialize(struct dahdi_hfc *zthfc) {
++ struct hfc_card *hfctmp = zthfc->card;
++ int i;
++
++ memset(&zthfc->span, 0x0, sizeof(struct dahdi_span)); // you never can tell...
++
++ sprintf(zthfc->span.name, "ZTHFC%d", hfc_dev_count + 1);
++ if (hfctmp->regs.nt_mode == 1) {
++#ifdef RTAITIMING
++ sprintf(zthfc->span.desc, "HFC-S PCI A ISDN card %d [NT] [realtime]", hfc_dev_count + 1);
++#else
++ sprintf(zthfc->span.desc, "HFC-S PCI A ISDN card %d [NT]", hfc_dev_count + 1);
++#endif
++ } else {
++#ifdef RTAITIMING
++ sprintf(zthfc->span.desc, "HFC-S PCI A ISDN card %d [TE] [realtime]", hfc_dev_count + 1);
++#else
++ sprintf(zthfc->span.desc, "HFC-S PCI A ISDN card %d [TE]", hfc_dev_count + 1);
++#endif
++ }
++
++ zthfc->span.spanconfig = zthfc_spanconfig;
++ zthfc->span.chanconfig = zthfc_chanconfig;
++ zthfc->span.startup = zthfc_startup;
++ zthfc->span.shutdown = zthfc_shutdown;
++ zthfc->span.maint = zthfc_maint;
++ zthfc->span.rbsbits = zthfc_rbsbits;
++ zthfc->span.open = zthfc_open;
++ zthfc->span.close = zthfc_close;
++ zthfc->span.ioctl = zthfc_ioctl;
++
++ zthfc->span.channels = 3;
++ zthfc->span.chans = zthfc->_chans;
++ for (i = 0; i < zthfc->span.channels; i++)
++ zthfc->_chans[i] = &zthfc->chans[i];
++
++ zthfc->span.deflaw = DAHDI_LAW_ALAW;
++ zthfc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_CCS; // <--- this is really BS
++ zthfc->span.offset = 0;
++ init_waitqueue_head(&zthfc->span.maintq);
++ zthfc->span.pvt = zthfc;
++
++ for (i = 0; i < zthfc->span.channels; i++) {
++ memset(&(zthfc->chans[i]), 0x0, sizeof(struct dahdi_chan));
++ sprintf(zthfc->chans[i].name, "ZTHFC%d/%d/%d", hfc_dev_count + 1,0,i + 1);
++ zthfc->chans[i].pvt = zthfc;
++ zthfc->chans[i].sigcap = DAHDI_SIG_EM | DAHDI_SIG_CLEAR | DAHDI_SIG_FXSLS | DAHDI_SIG_FXSGS | DAHDI_SIG_FXSKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_FXOKS | DAHDI_SIG_CAS | DAHDI_SIG_SF;
++ zthfc->chans[i].chanpos = i + 1;
++ }
++
++ if (dahdi_register(&zthfc->span,0)) {
++ printk(KERN_CRIT "unable to register DAHDI device!\n");
++ return -1;
++ }
++// printk(KERN_CRIT "zaphfc: registered DAHDI device!\n");
++ return 0;
++}
++
++#ifdef RTAITIMING
++#define TICK_PERIOD 1000000
++#define TICK_PERIOD2 1000000000
++#define TASK_PRIORITY 1
++#define STACK_SIZE 10000
++
++static RT_TASK rt_task;
++static struct hfc_card *rtai_hfc_list[hfc_MAX_CARDS];
++static unsigned char rtai_hfc_counter = 0;
++
++static void rtai_register_hfc(struct hfc_card *hfctmp) {
++ rtai_hfc_list[rtai_hfc_counter++] = hfctmp;
++}
++
++static void rtai_loop(int t) {
++ int i=0;
++ for (;;) {
++ for (i=0; i < rtai_hfc_counter; i++) {
++ if (rtai_hfc_list[i] != NULL)
++ hfc_service(rtai_hfc_list[i]);
++ }
++ rt_task_wait_period();
++ }
++}
++#endif
++
++int hfc_findCards(int pcivendor, int pcidevice, char *vendor_name, char *card_name) {
++ struct pci_dev *tmp;
++ struct hfc_card *hfctmp = NULL;
++ struct dahdi_hfc *zthfc = NULL;
++
++ tmp = pci_get_device(pcivendor, pcidevice, multi_hfc);
++ while (tmp != NULL) {
++ multi_hfc = tmp; // skip this next time.
++
++ if (pci_enable_device(tmp)) {
++ multi_hfc = NULL;
++ return -1;
++ }
++ pci_set_master(tmp);
++
++ hfctmp = kmalloc(sizeof(struct hfc_card), GFP_KERNEL);
++ if (!hfctmp) {
++ printk(KERN_WARNING "zaphfc: unable to kmalloc!\n");
++ pci_disable_device(tmp);
++ multi_hfc = NULL;
++ return -ENOMEM;
++ }
++ memset(hfctmp, 0x0, sizeof(struct hfc_card));
++ spin_lock_init(&hfctmp->lock);
++
++ hfctmp->pcidev = tmp;
++ hfctmp->pcibus = tmp->bus->number;
++ hfctmp->pcidevfn = tmp->devfn;
++
++ if (!tmp->irq) {
++ printk(KERN_WARNING "zaphfc: no irq!\n");
++ } else {
++ hfctmp->irq = tmp->irq;
++ }
++
++ hfctmp->pci_io = (char *) tmp->resource[1].start;
++ if (!hfctmp->pci_io) {
++ printk(KERN_WARNING "zaphfc: no iomem!\n");
++ kfree(hfctmp);
++ pci_disable_device(tmp);
++ multi_hfc = NULL;
++ return -1;
++ }
++
++ hfctmp->fifomem = kmalloc(65536, GFP_KERNEL);
++ if (!hfctmp->fifomem) {
++ printk(KERN_WARNING "zaphfc: unable to kmalloc fifomem!\n");
++ kfree(hfctmp);
++ pci_disable_device(tmp);
++ multi_hfc = NULL;
++ return -ENOMEM;
++ } else {
++ memset(hfctmp->fifomem, 0x0, 65536);
++ hfctmp->fifos = (void *)(((ulong) hfctmp->fifomem) & ~0x7FFF) + 0x8000;
++ pci_write_config_dword(hfctmp->pcidev, 0x80, (u_int) virt_to_bus(hfctmp->fifos));
++ hfctmp->pci_io = ioremap((ulong) hfctmp->pci_io, 256);
++ }
++
++#ifdef RTAITIMING
++ /* we need no stinking irq */
++ hfctmp->irq = 0;
++#else
++ if (request_irq(hfctmp->irq, &hfc_interrupt, IRQF_SHARED, "zaphfc", hfctmp)) {
++ printk(KERN_WARNING "zaphfc: unable to register irq\n");
++ kfree(hfctmp->fifomem);
++ kfree(hfctmp);
++ iounmap((void *) hfctmp->pci_io);
++ pci_disable_device(tmp);
++ multi_hfc = NULL;
++ return -EIO;
++ }
++#endif
++
++#ifdef RTAITIMING
++ rtai_register_hfc(hfctmp);
++#endif
++ printk(KERN_INFO
++ "zaphfc: %s %s configured at mem %lx fifo %lx(%#x) IRQ %d HZ %d\n",
++ vendor_name, card_name,
++ (unsigned long) hfctmp->pci_io,
++ (unsigned long) hfctmp->fifos,
++ (u_int) virt_to_bus(hfctmp->fifos),
++ hfctmp->irq, HZ);
++ pci_write_config_word(hfctmp->pcidev, PCI_COMMAND, PCI_COMMAND_MEMORY); // enable memio
++ hfctmp->regs.int_m1 = 0; // no ints
++ hfctmp->regs.int_m2 = 0; // not at all
++ hfc_outb(hfctmp,hfc_INT_M1,hfctmp->regs.int_m1);
++ hfc_outb(hfctmp,hfc_INT_M2,hfctmp->regs.int_m2);
++
++ if ((modes & (1 << hfc_dev_count)) != 0) {
++ printk(KERN_INFO "zaphfc: Card %d configured for NT mode\n",hfc_dev_count);
++ hfctmp->regs.nt_mode = 1;
++ } else {
++ printk(KERN_INFO "zaphfc: Card %d configured for TE mode\n",hfc_dev_count);
++ hfctmp->regs.nt_mode = 0;
++ }
++
++ zthfc = kmalloc(sizeof(struct dahdi_hfc),GFP_KERNEL);
++ if (!zthfc) {
++ printk(KERN_CRIT "zaphfc: unable to kmalloc!\n");
++ hfc_shutdownCard(hfctmp);
++ kfree(hfctmp);
++ multi_hfc = NULL;
++ return -ENOMEM;
++ }
++ memset(zthfc, 0x0, sizeof(struct dahdi_hfc));
++
++ zthfc->card = hfctmp;
++ zthfc_initialize(zthfc);
++ hfctmp->ztdev = zthfc;
++
++ memset(hfctmp->drecbuf, 0x0, sizeof(hfctmp->drecbuf));
++ hfctmp->ztdev->chans[2].readchunk = hfctmp->drecbuf;
++
++ memset(hfctmp->dtransbuf, 0x0, sizeof(hfctmp->dtransbuf));
++ hfctmp->ztdev->chans[2].writechunk = hfctmp->dtransbuf;
++
++ memset(hfctmp->brecbuf[0], 0x0, sizeof(hfctmp->brecbuf[0]));
++ hfctmp->ztdev->chans[0].readchunk = hfctmp->brecbuf[0];
++ memset(hfctmp->btransbuf[0], 0x0, sizeof(hfctmp->btransbuf[0]));
++ hfctmp->ztdev->chans[0].writechunk = hfctmp->btransbuf[0];
++
++ memset(hfctmp->brecbuf[1], 0x0, sizeof(hfctmp->brecbuf[1]));
++ hfctmp->ztdev->chans[1].readchunk = hfctmp->brecbuf[1];
++ memset(hfctmp->btransbuf[1], 0x0, sizeof(hfctmp->btransbuf[1]));
++ hfctmp->ztdev->chans[1].writechunk = hfctmp->btransbuf[1];
++
++
++ hfc_registerCard(hfctmp);
++ hfc_resetCard(hfctmp);
++ tmp = pci_get_device(pcivendor, pcidevice, multi_hfc);
++ }
++ return 0;
++}
++
++
++
++int init_module(void) {
++ int i = 0;
++#ifdef RTAITIMING
++ RTIME tick_period;
++ for (i=0; i < hfc_MAX_CARDS; i++) {
++ rtai_hfc_list[i] = NULL;
++ }
++ rt_set_periodic_mode();
++#endif
++ i = 0;
++ while (id_list[i].vendor_id) {
++ multi_hfc = NULL;
++ hfc_findCards(id_list[i].vendor_id, id_list[i].device_id, id_list[i].vendor_name, id_list[i].card_name);
++ i++;
++ }
++#ifdef RTAITIMING
++ for (i=0; i < hfc_MAX_CARDS; i++) {
++ if (rtai_hfc_list[i]) {
++ printk(KERN_INFO
++ "zaphfc: configured %d at mem %#x fifo %#x(%#x) for realtime servicing\n",
++ rtai_hfc_list[i]->cardno,
++ (u_int) rtai_hfc_list[i]->pci_io,
++ (u_int) rtai_hfc_list[i]->fifos,
++ (u_int) virt_to_bus(rtai_hfc_list[i]->fifos));
++
++ }
++ }
++ rt_task_init(&rt_task, rtai_loop, 1, STACK_SIZE, TASK_PRIORITY, 0, 0);
++ tick_period = start_rt_timer(nano2count(TICK_PERIOD));
++ rt_task_make_periodic(&rt_task, rt_get_time() + tick_period, tick_period);
++#endif
++ printk(KERN_INFO "zaphfc: %d hfc-pci card(s) in this box.\n", hfc_dev_count);
++ return 0;
++}
++
++void cleanup_module(void) {
++ struct hfc_card *tmpcard;
++#ifdef RTAITIMING
++ stop_rt_timer();
++ rt_task_delete(&rt_task);
++#endif
++ printk(KERN_INFO "zaphfc: stop\n");
++// spin_lock(&registerlock);
++ while (hfc_dev_list != NULL) {
++ if (hfc_dev_list == NULL) break;
++ hfc_shutdownCard(hfc_dev_list);
++ tmpcard = hfc_dev_list;
++ hfc_dev_list = hfc_dev_list->next;
++ if (tmpcard != NULL) {
++ kfree(tmpcard);
++ tmpcard = NULL;
++ printk(KERN_INFO "zaphfc: freed one card.\n");
++ }
++ }
++// spin_unlock(&registerlock);
++}
++#endif
++
++
++module_param(modes, int, 0600);
++module_param(debug, int, 0600);
++
++MODULE_DESCRIPTION("HFC-S PCI A Zaptel Driver");
++MODULE_AUTHOR("Klaus-Peter Junghanns <kpj@junghanns.net>");
++#ifdef MODULE_LICENSE
++MODULE_LICENSE("GPL");
++#endif
+Index: dahdi-linux-2.1.0/drivers/dahdi/zaphfc.h
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ dahdi-linux-2.1.0/drivers/dahdi/zaphfc.h 2008-12-10 12:46:14.000000000 +0200
+@@ -0,0 +1,290 @@
++/*
++ * zaphfc.h - Zaptel driver for HFC-S PCI A based ISDN BRI cards
++ *
++ * kernel module based on HFC PCI ISDN4Linux and Zaptel drivers
++ *
++ * Copyright (C) 2002, 2003, 2004, 2005 Junghanns.NET GmbH
++ *
++ * Klaus-Peter Junghanns <kpj@junghanns.net>
++ *
++ * This program is free software and may be modified and
++ * distributed under the terms of the GNU Public License.
++ *
++ */
++
++/* HFC register addresses - accessed using memory mapped I/O */
++/* For a list, see datasheet section 3.2.1 at page 21 */
++
++#define hfc_outb(a,b,c) (writeb((c),(a)->pci_io+(b)))
++#define hfc_inb(a,b) (readb((a)->pci_io+(b)))
++
++/* GCI/IOM bus monitor registers */
++
++#define hfc_C_I 0x08
++#define hfc_TRxR 0x0C
++#define hfc_MON1_D 0x28
++#define hfc_MON2_D 0x2C
++
++
++/* GCI/IOM bus timeslot registers */
++
++#define hfc_B1_SSL 0x80
++#define hfc_B2_SSL 0x84
++#define hfc_AUX1_SSL 0x88
++#define hfc_AUX2_SSL 0x8C
++#define hfc_B1_RSL 0x90
++#define hfc_B2_RSL 0x94
++#define hfc_AUX1_RSL 0x98
++#define hfc_AUX2_RSL 0x9C
++
++/* GCI/IOM bus data registers */
++
++#define hfc_B1_D 0xA0
++#define hfc_B2_D 0xA4
++#define hfc_AUX1_D 0xA8
++#define hfc_AUX2_D 0xAC
++
++/* GCI/IOM bus configuration registers */
++
++#define hfc_MST_EMOD 0xB4
++#define hfc_MST_MODE 0xB8
++#define hfc_CONNECT 0xBC
++
++
++/* Interrupt and status registers */
++
++#define hfc_FIFO_EN 0x44
++#define hfc_TRM 0x48
++#define hfc_B_MODE 0x4C
++#define hfc_CHIP_ID 0x58
++#define hfc_CIRM 0x60
++#define hfc_CTMT 0x64
++#define hfc_INT_M1 0x68
++#define hfc_INT_M2 0x6C
++#define hfc_INT_S1 0x78
++#define hfc_INT_S2 0x7C
++#define hfc_STATUS 0x70
++
++/* S/T section registers */
++
++#define hfc_STATES 0xC0
++#define hfc_SCTRL 0xC4
++#define hfc_SCTRL_E 0xC8
++#define hfc_SCTRL_R 0xCC
++#define hfc_SQ 0xD0
++#define hfc_CLKDEL 0xDC
++#define hfc_B1_REC 0xF0
++#define hfc_B1_SEND 0xF0
++#define hfc_B2_REC 0xF4
++#define hfc_B2_SEND 0xF4
++#define hfc_D_REC 0xF8
++#define hfc_D_SEND 0xF8
++#define hfc_E_REC 0xFC
++
++/* Bits and values in various HFC PCI registers */
++
++/* bits in status register (READ) */
++#define hfc_STATUS_PCI_PROC 0x02
++#define hfc_STATUS_NBUSY 0x04
++#define hfc_STATUS_TIMER_ELAP 0x10
++#define hfc_STATUS_STATINT 0x20
++#define hfc_STATUS_FRAMEINT 0x40
++#define hfc_STATUS_ANYINT 0x80
++
++/* bits in CTMT (Write) */
++#define hfc_CTMT_CLTIMER 0x80
++#define hfc_CTMT_TIM3_125 0x04
++#define hfc_CTMT_TIM25 0x10
++#define hfc_CTMT_TIM50 0x14
++#define hfc_CTMT_TIM400 0x18
++#define hfc_CTMT_TIM800 0x1C
++#define hfc_CTMT_AUTO_TIMER 0x20
++#define hfc_CTMT_TRANSB2 0x02
++#define hfc_CTMT_TRANSB1 0x01
++
++/* bits in CIRM (Write) */
++#define hfc_CIRM_AUX_MSK 0x07
++#define hfc_CIRM_RESET 0x08
++#define hfc_CIRM_B1_REV 0x40
++#define hfc_CIRM_B2_REV 0x80
++
++/* bits in INT_M1 and INT_S1 */
++#define hfc_INTS_B1TRANS 0x01
++#define hfc_INTS_B2TRANS 0x02
++#define hfc_INTS_DTRANS 0x04
++#define hfc_INTS_B1REC 0x08
++#define hfc_INTS_B2REC 0x10
++#define hfc_INTS_DREC 0x20
++#define hfc_INTS_L1STATE 0x40
++#define hfc_INTS_TIMER 0x80
++
++/* bits in INT_M2 */
++#define hfc_M2_PROC_TRANS 0x01
++#define hfc_M2_GCI_I_CHG 0x02
++#define hfc_M2_GCI_MON_REC 0x04
++#define hfc_M2_IRQ_ENABLE 0x08
++#define hfc_M2_PMESEL 0x80
++
++/* bits in STATES */
++#define hfc_STATES_STATE_MASK 0x0F
++#define hfc_STATES_LOAD_STATE 0x10
++#define hfc_STATES_ACTIVATE 0x20
++#define hfc_STATES_DO_ACTION 0x40
++#define hfc_STATES_NT_G2_G3 0x80
++
++/* bits in HFCD_MST_MODE */
++#define hfc_MST_MODE_MASTER 0x01
++#define hfc_MST_MODE_SLAVE 0x00
++/* remaining bits are for codecs control */
++
++/* bits in HFCD_SCTRL */
++#define hfc_SCTRL_B1_ENA 0x01
++#define hfc_SCTRL_B2_ENA 0x02
++#define hfc_SCTRL_MODE_TE 0x00
++#define hfc_SCTRL_MODE_NT 0x04
++#define hfc_SCTRL_LOW_PRIO 0x08
++#define hfc_SCTRL_SQ_ENA 0x10
++#define hfc_SCTRL_TEST 0x20
++#define hfc_SCTRL_NONE_CAP 0x40
++#define hfc_SCTRL_PWR_DOWN 0x80
++
++/* bits in SCTRL_E */
++#define hfc_SCTRL_E_AUTO_AWAKE 0x01
++#define hfc_SCTRL_E_DBIT_1 0x04
++#define hfc_SCTRL_E_IGNORE_COL 0x08
++#define hfc_SCTRL_E_CHG_B1_B2 0x80
++
++/* bits in FIFO_EN register */
++#define hfc_FIFOEN_B1TX 0x01
++#define hfc_FIFOEN_B1RX 0x02
++#define hfc_FIFOEN_B2TX 0x04
++#define hfc_FIFOEN_B2RX 0x08
++#define hfc_FIFOEN_DTX 0x10
++#define hfc_FIFOEN_DRX 0x20
++
++#define hfc_FIFOEN_B1 (hfc_FIFOEN_B1TX|hfc_FIFOEN_B1RX)
++#define hfc_FIFOEN_B2 (hfc_FIFOEN_B2TX|hfc_FIFOEN_B2RX)
++#define hfc_FIFOEN_D (hfc_FIFOEN_DTX|hfc_FIFOEN_DRX)
++
++/* bits in the CONNECT register */
++#define hfc_CONNECT_B1_shift 0
++#define hfc_CONNECT_B2_shift 3
++
++#define hfc_CONNECT_HFC_from_ST 0x0
++#define hfc_CONNECT_HFC_from_GCI 0x1
++#define hfc_CONNECT_ST_from_HFC 0x0
++#define hfc_CONNECT_ST_from_GCI 0x2
++#define hfc_CONNECT_GCI_from_HFC 0x0
++#define hfc_CONNECT_GCI_from_ST 0x4
++
++/* bits in the __SSL and __RSL registers */
++#define hfc_SRSL_STIO 0x40
++#define hfc_SRSL_ENABLE 0x80
++#define hfc_SRCL_SLOT_MASK 0x1f
++
++/* FIFO memory definitions */
++
++#define hfc_FMASK 0x000f
++#define hfc_ZMASK 0x01ff
++#define hfc_ZMASKB 0x1fff
++
++#define hfc_D_FIFO_SIZE 0x0200
++#define hfc_B_SUB_VAL 0x0200
++#define hfc_B_FIFO_SIZE 0x1E00
++#define hfc_MAX_DFRAMES 0x000f
++
++#define hfc_FIFO_DTX_Z1 0x2080
++#define hfc_FIFO_DTX_Z2 0x2082
++#define hfc_FIFO_DTX_F1 0x20a0
++#define hfc_FIFO_DTX_F2 0x20a1
++#define hfc_FIFO_DTX 0x0000
++#define hfc_FIFO_DTX_ZOFF 0x000
++
++#define hfc_FIFO_DRX_Z1 0x6080
++#define hfc_FIFO_DRX_Z2 0x6082
++#define hfc_FIFO_DRX_F1 0x60a0
++#define hfc_FIFO_DRX_F2 0x60a1
++#define hfc_FIFO_DRX 0x4000
++#define hfc_FIFO_DRX_ZOFF 0x4000
++
++#define hfc_FIFO_B1TX_Z1 0x2000
++#define hfc_FIFO_B1TX_Z2 0x2002
++#define hfc_FIFO_B1RX_Z1 0x6000
++#define hfc_FIFO_B1RX_Z2 0x6002
++
++#define hfc_FIFO_B1TX_F1 0x2080
++#define hfc_FIFO_B1TX_F2 0x2081
++#define hfc_FIFO_B1RX_F1 0x6080
++#define hfc_FIFO_B1RX_F2 0x6081
++
++#define hfc_FIFO_B1RX_ZOFF 0x4000
++#define hfc_FIFO_B1TX_ZOFF 0x0000
++
++#define hfc_FIFO_B2TX_Z1 0x2100
++#define hfc_FIFO_B2TX_Z2 0x2102
++#define hfc_FIFO_B2RX_Z1 0x6100
++#define hfc_FIFO_B2RX_Z2 0x6102
++
++#define hfc_FIFO_B2TX_F1 0x2180
++#define hfc_FIFO_B2TX_F2 0x2181
++#define hfc_FIFO_B2RX_F1 0x6180
++#define hfc_FIFO_B2RX_F2 0x6181
++
++#define hfc_FIFO_B2RX_ZOFF 0x6000
++#define hfc_FIFO_B2TX_ZOFF 0x2000
++
++#define hfc_BTRANS_THRESHOLD 128
++#define hfc_BTRANS_THRESMASK 0x00
++
++/* Structures */
++
++typedef struct hfc_regs {
++ unsigned char fifo_en;
++ unsigned char ctmt;
++ unsigned char int_m1;
++ unsigned char int_m2;
++ unsigned char sctrl;
++ unsigned char sctrl_e;
++ unsigned char sctrl_r;
++ unsigned char connect;
++ unsigned char trm;
++ unsigned char mst_mode;
++ unsigned char bswapped;
++ unsigned char nt_mode;
++ unsigned char int_drec;
++} hfc_regs;
++
++typedef struct hfc_card {
++ spinlock_t lock;
++ unsigned int irq;
++ unsigned int iomem;
++ int ticks;
++ int clicks;
++ unsigned char *pci_io;
++ void *fifomem; // start of the shared mem
++ volatile void *fifos; // 32k aligned mem for the fifos
++ struct hfc_regs regs;
++ unsigned int pcibus;
++ unsigned int pcidevfn;
++ struct pci_dev *pcidev;
++ struct dahdi_hfc *ztdev;
++ int drecinframe;
++ unsigned char drecbuf[hfc_D_FIFO_SIZE];
++ unsigned char dtransbuf[hfc_D_FIFO_SIZE];
++ unsigned char brecbuf[2][DAHDI_CHUNKSIZE];
++ unsigned char btransbuf[2][DAHDI_CHUNKSIZE];
++ unsigned char cardno;
++ struct hfc_card *next;
++} hfc_card;
++
++typedef struct dahdi_hfc {
++ unsigned int usecount;
++ struct dahdi_span span;
++ struct dahdi_chan chans[3];
++ struct dahdi_chan *_chans[3];
++ struct hfc_card *card;
++} dahdi_hfc;
++
++/* tune this */
++#define hfc_BCHAN_BUFFER 8
++#define hfc_MAX_CARDS 8