diff options
Diffstat (limited to 'main/libc0.9.32/0021-libcrypt-add-support-for-SHA256-CRYPT-password-hashi.patch')
-rw-r--r-- | main/libc0.9.32/0021-libcrypt-add-support-for-SHA256-CRYPT-password-hashi.patch | 789 |
1 files changed, 789 insertions, 0 deletions
diff --git a/main/libc0.9.32/0021-libcrypt-add-support-for-SHA256-CRYPT-password-hashi.patch b/main/libc0.9.32/0021-libcrypt-add-support-for-SHA256-CRYPT-password-hashi.patch new file mode 100644 index 0000000000..b49e6da810 --- /dev/null +++ b/main/libc0.9.32/0021-libcrypt-add-support-for-SHA256-CRYPT-password-hashi.patch @@ -0,0 +1,789 @@ +From 243a437f9345fd7182bb4b2f60d892cc86794e8d Mon Sep 17 00:00:00 2001 +From: William Pitcock <nenolod@dereferenced.org> +Date: Mon, 19 Dec 2011 01:25:09 -0600 +Subject: [PATCH] libcrypt: add support for SHA256-CRYPT password hashing + +This is based on Ulrich Drepper's implementation in GLIBC, but hacked up to work +in uClibc. The differences from the GLIBC version are as follows: + +- b64_from_24bit() has been converted into a macro +- Usage of GLIBC-isms (such as libc_freeres_ptr) have been removed + +It is enabled by the UCLIBC_HAS_SHA256_CRYPT_IMPL configuration symbol. You must +have UCLIBC_HAS_CRYPT_IMPL enabled as well. + +Signed-off-by: William Pitcock <nenolod@dereferenced.org> +Signed-off-by: Bernhard Reutner-Fischer <rep.dot.nop@gmail.com> +(cherry picked from commit 3ac5fd7ecaeb6721d812c2b93e446bf9a31acdde) +--- + extra/Configs/Config.in | 7 + + libcrypt/Makefile.in | 1 + + libcrypt/crypt.c | 3 + + libcrypt/libcrypt.h | 2 + + libcrypt/sha256-crypt.c | 326 +++++++++++++++++++++++++++++++++++++++++++++++ + libcrypt/sha256.c | 294 ++++++++++++++++++++++++++++++++++++++++++ + libcrypt/sha256.h | 58 +++++++++ + 7 files changed, 691 insertions(+), 0 deletions(-) + create mode 100644 libcrypt/sha256-crypt.c + create mode 100644 libcrypt/sha256.c + create mode 100644 libcrypt/sha256.h + +diff --git a/extra/Configs/Config.in b/extra/Configs/Config.in +index eec3ee9..66e4efb 100644 +--- a/extra/Configs/Config.in ++++ b/extra/Configs/Config.in +@@ -1137,6 +1137,13 @@ config UCLIBC_HAS_CRYPT_IMPL + help + libcrypt contains crypt(), setkey() and encrypt() + ++config UCLIBC_HAS_SHA256_CRYPT_IMPL ++ bool "libcrypt SHA256 support" ++ depends on UCLIBC_HAS_CRYPT_IMPL ++ help ++ This adds support for SHA256 password hashing via the crypt() function. ++ Say N here if you do not need SHA256 crypt support. ++ + config UCLIBC_HAS_SHA512_CRYPT_IMPL + bool "libcrypt SHA512 support" + depends on UCLIBC_HAS_CRYPT_IMPL +diff --git a/libcrypt/Makefile.in b/libcrypt/Makefile.in +index 2fceaed..94753f4 100644 +--- a/libcrypt/Makefile.in ++++ b/libcrypt/Makefile.in +@@ -21,6 +21,7 @@ libcrypt_OUT := $(top_builddir)libcrypt + + libcrypt_SRC-y := + libcrypt_SRC-$(UCLIBC_HAS_CRYPT_IMPL) += crypt.c des.c md5.c ++libcrypt_SRC-$(UCLIBC_HAS_SHA256_CRYPT_IMPL) += sha256.c sha256-crypt.c + libcrypt_SRC-$(UCLIBC_HAS_SHA512_CRYPT_IMPL) += sha512.c sha512-crypt.c + libcrypt_SRC-$(UCLIBC_HAS_CRYPT_STUB) += crypt_stub.c + +diff --git a/libcrypt/crypt.c b/libcrypt/crypt.c +index b5bf9ee..188a6a0 100644 +--- a/libcrypt/crypt.c ++++ b/libcrypt/crypt.c +@@ -19,6 +19,9 @@ static const struct { + const crypt_impl_f crypt_impl; + } crypt_impl_tab[] = { + { "$1$", __md5_crypt }, ++#ifdef __UCLIBC_HAS_SHA256_CRYPT_IMPL__ ++ { "$5$", __sha256_crypt }, ++#endif + #ifdef __UCLIBC_HAS_SHA512_CRYPT_IMPL__ + { "$6$", __sha512_crypt }, + #endif +diff --git a/libcrypt/libcrypt.h b/libcrypt/libcrypt.h +index fcad6ae..67733d1 100644 +--- a/libcrypt/libcrypt.h ++++ b/libcrypt/libcrypt.h +@@ -9,9 +9,11 @@ + #define __LIBCRYPT_H__ + + extern char *__md5_crypt(const unsigned char *pw, const unsigned char *salt) attribute_hidden; ++extern char *__sha256_crypt(const unsigned char *pw, const unsigned char *salt) attribute_hidden; + extern char *__sha512_crypt(const unsigned char *pw, const unsigned char *salt) attribute_hidden; + extern char *__des_crypt(const unsigned char *pw, const unsigned char *salt) attribute_hidden; + ++extern char *__sha256_crypt_r (const char *key, const char *salt, char *buffer, int buflen) attribute_hidden; + extern char *__sha512_crypt_r (const char *key, const char *salt, char *buffer, int buflen) attribute_hidden; + + /* shut up gcc-4.x signed warnings */ +diff --git a/libcrypt/sha256-crypt.c b/libcrypt/sha256-crypt.c +new file mode 100644 +index 0000000..4422148 +--- /dev/null ++++ b/libcrypt/sha256-crypt.c +@@ -0,0 +1,326 @@ ++/* One way encryption based on SHA256 sum. ++ Copyright (C) 2007, 2009 Free Software Foundation, Inc. ++ This file is part of the GNU C Library. ++ Contributed by Ulrich Drepper <drepper@redhat.com>, 2007. ++ ++ The GNU C Library is free software; you can redistribute it and/or ++ modify it under the terms of the GNU Lesser General Public ++ License as published by the Free Software Foundation; either ++ version 2.1 of the License, or (at your option) any later version. ++ ++ The GNU C Library is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ++ Lesser General Public License for more details. ++ ++ You should have received a copy of the GNU Lesser General Public ++ License along with the GNU C Library; if not, write to the Free ++ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA ++ 02111-1307 USA. */ ++ ++#include <assert.h> ++#include <errno.h> ++#include <stdbool.h> ++#include <stdlib.h> ++#include <string.h> ++#include <sys/param.h> ++ ++#include "sha256.h" ++#include "libcrypt.h" ++ ++/* Define our magic string to mark salt for SHA256 "encryption" ++ replacement. */ ++static const char sha256_salt_prefix[] = "$5$"; ++ ++/* Prefix for optional rounds specification. */ ++static const char sha256_rounds_prefix[] = "rounds="; ++ ++/* Maximum salt string length. */ ++#define SALT_LEN_MAX 16 ++/* Default number of rounds if not explicitly specified. */ ++#define ROUNDS_DEFAULT 5000 ++/* Minimum number of rounds. */ ++#define ROUNDS_MIN 1000 ++/* Maximum number of rounds. */ ++#define ROUNDS_MAX 999999999 ++ ++/* Table with characters for base64 transformation. */ ++static const char b64t[64] = ++"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; ++ ++#define B64_FROM_24BIT(b2, b1, b0, steps) \ ++ { \ ++ int n = (steps); \ ++ unsigned int w = ((b2) << 16) | ((b1) << 8) | (b0); \ ++ while (n-- > 0 && buflen > 0) \ ++ { \ ++ *cp++ = b64t[w & 0x3f]; \ ++ --buflen; \ ++ w >>= 6; \ ++ } \ ++ } ++ ++char * ++__sha256_crypt_r (const char *key, ++ const char *salt, ++ char *buffer, ++ int buflen) ++{ ++ unsigned char alt_result[32] ++ __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); ++ unsigned char temp_result[32] ++ __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); ++ size_t salt_len; ++ size_t key_len; ++ size_t cnt; ++ char *cp; ++ char *copied_key = NULL; ++ char *copied_salt = NULL; ++ char *p_bytes; ++ char *s_bytes; ++ /* Default number of rounds. */ ++ size_t rounds = ROUNDS_DEFAULT; ++ bool rounds_custom = false; ++ ++ /* Find beginning of salt string. The prefix should normally always ++ be present. Just in case it is not. */ ++ if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0) ++ /* Skip salt prefix. */ ++ salt += sizeof (sha256_salt_prefix) - 1; ++ ++ if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1) ++ == 0) ++ { ++ const char *num = salt + sizeof (sha256_rounds_prefix) - 1; ++ char *endp; ++ unsigned long int srounds = strtoul (num, &endp, 10); ++ if (*endp == '$') ++ { ++ salt = endp + 1; ++ rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX)); ++ rounds_custom = true; ++ } ++ } ++ ++ salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX); ++ key_len = strlen (key); ++ ++ if ((key - (char *) 0) % __alignof__ (uint32_t) != 0) ++ { ++ char *tmp = (char *) alloca (key_len + __alignof__ (uint32_t)); ++ key = copied_key = ++ memcpy (tmp + __alignof__ (uint32_t) ++ - (tmp - (char *) 0) % __alignof__ (uint32_t), ++ key, key_len); ++ assert ((key - (char *) 0) % __alignof__ (uint32_t) == 0); ++ } ++ ++ if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0) ++ { ++ char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t)); ++ salt = copied_salt = ++ memcpy (tmp + __alignof__ (uint32_t) ++ - (tmp - (char *) 0) % __alignof__ (uint32_t), ++ salt, salt_len); ++ assert ((salt - (char *) 0) % __alignof__ (uint32_t) == 0); ++ } ++ ++ struct sha256_ctx ctx; ++ struct sha256_ctx alt_ctx; ++ ++ /* Prepare for the real work. */ ++ __sha256_init_ctx (&ctx); ++ ++ /* Add the key string. */ ++ __sha256_process_bytes (key, key_len, &ctx); ++ ++ /* The last part is the salt string. This must be at most 16 ++ characters and it ends at the first `$' character. */ ++ __sha256_process_bytes (salt, salt_len, &ctx); ++ ++ ++ /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The ++ final result will be added to the first context. */ ++ __sha256_init_ctx (&alt_ctx); ++ ++ /* Add key. */ ++ __sha256_process_bytes (key, key_len, &alt_ctx); ++ ++ /* Add salt. */ ++ __sha256_process_bytes (salt, salt_len, &alt_ctx); ++ ++ /* Add key again. */ ++ __sha256_process_bytes (key, key_len, &alt_ctx); ++ ++ /* Now get result of this (32 bytes) and add it to the other ++ context. */ ++ __sha256_finish_ctx (&alt_ctx, alt_result); ++ ++ /* Add for any character in the key one byte of the alternate sum. */ ++ for (cnt = key_len; cnt > 32; cnt -= 32) ++ __sha256_process_bytes (alt_result, 32, &ctx); ++ __sha256_process_bytes (alt_result, cnt, &ctx); ++ ++ /* Take the binary representation of the length of the key and for every ++ 1 add the alternate sum, for every 0 the key. */ ++ for (cnt = key_len; cnt > 0; cnt >>= 1) ++ if ((cnt & 1) != 0) ++ __sha256_process_bytes (alt_result, 32, &ctx); ++ else ++ __sha256_process_bytes (key, key_len, &ctx); ++ ++ /* Create intermediate result. */ ++ __sha256_finish_ctx (&ctx, alt_result); ++ ++ /* Start computation of P byte sequence. */ ++ __sha256_init_ctx (&alt_ctx); ++ ++ /* For every character in the password add the entire password. */ ++ for (cnt = 0; cnt < key_len; ++cnt) ++ __sha256_process_bytes (key, key_len, &alt_ctx); ++ ++ /* Finish the digest. */ ++ __sha256_finish_ctx (&alt_ctx, temp_result); ++ ++ /* Create byte sequence P. */ ++ cp = p_bytes = alloca (key_len); ++ for (cnt = key_len; cnt >= 32; cnt -= 32) ++ cp = mempcpy (cp, temp_result, 32); ++ memcpy (cp, temp_result, cnt); ++ ++ /* Start computation of S byte sequence. */ ++ __sha256_init_ctx (&alt_ctx); ++ ++ /* For every character in the password add the entire password. */ ++ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) ++ __sha256_process_bytes (salt, salt_len, &alt_ctx); ++ ++ /* Finish the digest. */ ++ __sha256_finish_ctx (&alt_ctx, temp_result); ++ ++ /* Create byte sequence S. */ ++ cp = s_bytes = alloca (salt_len); ++ for (cnt = salt_len; cnt >= 32; cnt -= 32) ++ cp = mempcpy (cp, temp_result, 32); ++ memcpy (cp, temp_result, cnt); ++ ++ /* Repeatedly run the collected hash value through SHA256 to burn ++ CPU cycles. */ ++ for (cnt = 0; cnt < rounds; ++cnt) ++ { ++ /* New context. */ ++ __sha256_init_ctx (&ctx); ++ ++ /* Add key or last result. */ ++ if ((cnt & 1) != 0) ++ __sha256_process_bytes (p_bytes, key_len, &ctx); ++ else ++ __sha256_process_bytes (alt_result, 32, &ctx); ++ ++ /* Add salt for numbers not divisible by 3. */ ++ if (cnt % 3 != 0) ++ __sha256_process_bytes (s_bytes, salt_len, &ctx); ++ ++ /* Add key for numbers not divisible by 7. */ ++ if (cnt % 7 != 0) ++ __sha256_process_bytes (p_bytes, key_len, &ctx); ++ ++ /* Add key or last result. */ ++ if ((cnt & 1) != 0) ++ __sha256_process_bytes (alt_result, 32, &ctx); ++ else ++ __sha256_process_bytes (p_bytes, key_len, &ctx); ++ ++ /* Create intermediate result. */ ++ __sha256_finish_ctx (&ctx, alt_result); ++ } ++ ++ /* Now we can construct the result string. It consists of three ++ parts. */ ++ cp = stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen)); ++ buflen -= sizeof (sha256_salt_prefix) - 1; ++ ++ if (rounds_custom) ++ { ++ int n = snprintf (cp, MAX (0, buflen), "%s%zu$", ++ sha256_rounds_prefix, rounds); ++ cp += n; ++ buflen -= n; ++ } ++ ++ cp = stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len)); ++ buflen -= MIN ((size_t) MAX (0, buflen), salt_len); ++ ++ if (buflen > 0) ++ { ++ *cp++ = '$'; ++ --buflen; ++ } ++ ++ B64_FROM_24BIT (alt_result[0], alt_result[10], alt_result[20], 4); ++ B64_FROM_24BIT (alt_result[21], alt_result[1], alt_result[11], 4); ++ B64_FROM_24BIT (alt_result[12], alt_result[22], alt_result[2], 4); ++ B64_FROM_24BIT (alt_result[3], alt_result[13], alt_result[23], 4); ++ B64_FROM_24BIT (alt_result[24], alt_result[4], alt_result[14], 4); ++ B64_FROM_24BIT (alt_result[15], alt_result[25], alt_result[5], 4); ++ B64_FROM_24BIT (alt_result[6], alt_result[16], alt_result[26], 4); ++ B64_FROM_24BIT (alt_result[27], alt_result[7], alt_result[17], 4); ++ B64_FROM_24BIT (alt_result[18], alt_result[28], alt_result[8], 4); ++ B64_FROM_24BIT (alt_result[9], alt_result[19], alt_result[29], 4); ++ B64_FROM_24BIT (0, alt_result[31], alt_result[30], 3); ++ if (buflen <= 0) ++ { ++ __set_errno (ERANGE); ++ buffer = NULL; ++ } ++ else ++ *cp = '\0'; /* Terminate the string. */ ++ ++ /* Clear the buffer for the intermediate result so that people ++ attaching to processes or reading core dumps cannot get any ++ information. We do it in this way to clear correct_words[] ++ inside the SHA256 implementation as well. */ ++ __sha256_init_ctx (&ctx); ++ __sha256_finish_ctx (&ctx, alt_result); ++ memset (&ctx, '\0', sizeof (ctx)); ++ memset (&alt_ctx, '\0', sizeof (alt_ctx)); ++ ++ memset (temp_result, '\0', sizeof (temp_result)); ++ memset (p_bytes, '\0', key_len); ++ memset (s_bytes, '\0', salt_len); ++ if (copied_key != NULL) ++ memset (copied_key, '\0', key_len); ++ if (copied_salt != NULL) ++ memset (copied_salt, '\0', salt_len); ++ ++ return buffer; ++} ++ ++static char *buffer; ++ ++/* This entry point is equivalent to the `crypt' function in Unix ++ libcs. */ ++char * ++__sha256_crypt (const unsigned char *key, const unsigned char *salt) ++{ ++ /* We don't want to have an arbitrary limit in the size of the ++ password. We can compute an upper bound for the size of the ++ result in advance and so we can prepare the buffer we pass to ++ `sha256_crypt_r'. */ ++ static int buflen; ++ int needed = (sizeof (sha256_salt_prefix) - 1 ++ + sizeof (sha256_rounds_prefix) + 9 + 1 ++ + strlen (salt) + 1 + 43 + 1); ++ ++ if (buflen < needed) ++ { ++ char *new_buffer = (char *) realloc (buffer, needed); ++ if (new_buffer == NULL) ++ return NULL; ++ ++ buffer = new_buffer; ++ buflen = needed; ++ } ++ ++ return __sha256_crypt_r ((const char *) key, (const char *) salt, buffer, buflen); ++} +diff --git a/libcrypt/sha256.c b/libcrypt/sha256.c +new file mode 100644 +index 0000000..e652a67 +--- /dev/null ++++ b/libcrypt/sha256.c +@@ -0,0 +1,294 @@ ++/* Functions to compute SHA256 message digest of files or memory blocks. ++ according to the definition of SHA256 in FIPS 180-2. ++ Copyright (C) 2007 Free Software Foundation, Inc. ++ This file is part of the GNU C Library. ++ ++ The GNU C Library is free software; you can redistribute it and/or ++ modify it under the terms of the GNU Lesser General Public ++ License as published by the Free Software Foundation; either ++ version 2.1 of the License, or (at your option) any later version. ++ ++ The GNU C Library is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ++ Lesser General Public License for more details. ++ ++ You should have received a copy of the GNU Lesser General Public ++ License along with the GNU C Library; if not, write to the Free ++ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA ++ 02111-1307 USA. */ ++ ++/* Written by Ulrich Drepper <drepper@redhat.com>, 2007. */ ++ ++#ifdef HAVE_CONFIG_H ++# include <config.h> ++#endif ++ ++#include <endian.h> ++#include <stdlib.h> ++#include <string.h> ++#include <sys/types.h> ++ ++#include "sha256.h" ++ ++#if __BYTE_ORDER == __LITTLE_ENDIAN ++# ifdef _LIBC ++# include <byteswap.h> ++# define SWAP(n) bswap_32 (n) ++# else ++# define SWAP(n) \ ++ (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) ++# endif ++#else ++# define SWAP(n) (n) ++#endif ++ ++ ++/* This array contains the bytes used to pad the buffer to the next ++ 64-byte boundary. (FIPS 180-2:5.1.1) */ ++static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; ++ ++ ++/* Constants for SHA256 from FIPS 180-2:4.2.2. */ ++static const uint32_t K[64] = ++ { ++ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, ++ 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, ++ 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, ++ 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, ++ 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, ++ 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, ++ 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, ++ 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, ++ 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, ++ 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, ++ 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, ++ 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, ++ 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, ++ 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, ++ 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, ++ 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ++ }; ++ ++ ++/* Process LEN bytes of BUFFER, accumulating context into CTX. ++ It is assumed that LEN % 64 == 0. */ ++static void ++sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx) ++{ ++ const uint32_t *words = buffer; ++ size_t nwords = len / sizeof (uint32_t); ++ uint32_t a = ctx->H[0]; ++ uint32_t b = ctx->H[1]; ++ uint32_t c = ctx->H[2]; ++ uint32_t d = ctx->H[3]; ++ uint32_t e = ctx->H[4]; ++ uint32_t f = ctx->H[5]; ++ uint32_t g = ctx->H[6]; ++ uint32_t h = ctx->H[7]; ++ ++ /* First increment the byte count. FIPS 180-2 specifies the possible ++ length of the file up to 2^64 bits. Here we only compute the ++ number of bytes. Do a double word increment. */ ++ ctx->total[0] += len; ++ if (ctx->total[0] < len) ++ ++ctx->total[1]; ++ ++ /* Process all bytes in the buffer with 64 bytes in each round of ++ the loop. */ ++ while (nwords > 0) ++ { ++ uint32_t W[64]; ++ uint32_t a_save = a; ++ uint32_t b_save = b; ++ uint32_t c_save = c; ++ uint32_t d_save = d; ++ uint32_t e_save = e; ++ uint32_t f_save = f; ++ uint32_t g_save = g; ++ uint32_t h_save = h; ++ ++ /* Operators defined in FIPS 180-2:4.1.2. */ ++#define Ch(x, y, z) ((x & y) ^ (~x & z)) ++#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) ++#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22)) ++#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25)) ++#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3)) ++#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10)) ++ ++ /* It is unfortunate that C does not provide an operator for ++ cyclic rotation. Hope the C compiler is smart enough. */ ++#define CYCLIC(w, s) ((w >> s) | (w << (32 - s))) ++ ++ /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ ++ for (unsigned int t = 0; t < 16; ++t) ++ { ++ W[t] = SWAP (*words); ++ ++words; ++ } ++ for (unsigned int t = 16; t < 64; ++t) ++ W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16]; ++ ++ /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ ++ for (unsigned int t = 0; t < 64; ++t) ++ { ++ uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t]; ++ uint32_t T2 = S0 (a) + Maj (a, b, c); ++ h = g; ++ g = f; ++ f = e; ++ e = d + T1; ++ d = c; ++ c = b; ++ b = a; ++ a = T1 + T2; ++ } ++ ++ /* Add the starting values of the context according to FIPS 180-2:6.2.2 ++ step 4. */ ++ a += a_save; ++ b += b_save; ++ c += c_save; ++ d += d_save; ++ e += e_save; ++ f += f_save; ++ g += g_save; ++ h += h_save; ++ ++ /* Prepare for the next round. */ ++ nwords -= 16; ++ } ++ ++ /* Put checksum in context given as argument. */ ++ ctx->H[0] = a; ++ ctx->H[1] = b; ++ ctx->H[2] = c; ++ ctx->H[3] = d; ++ ctx->H[4] = e; ++ ctx->H[5] = f; ++ ctx->H[6] = g; ++ ctx->H[7] = h; ++} ++ ++ ++/* Initialize structure containing state of computation. ++ (FIPS 180-2:5.3.2) */ ++void ++__sha256_init_ctx (struct sha256_ctx *ctx) ++{ ++ ctx->H[0] = 0x6a09e667; ++ ctx->H[1] = 0xbb67ae85; ++ ctx->H[2] = 0x3c6ef372; ++ ctx->H[3] = 0xa54ff53a; ++ ctx->H[4] = 0x510e527f; ++ ctx->H[5] = 0x9b05688c; ++ ctx->H[6] = 0x1f83d9ab; ++ ctx->H[7] = 0x5be0cd19; ++ ++ ctx->total[0] = ctx->total[1] = 0; ++ ctx->buflen = 0; ++} ++ ++ ++/* Process the remaining bytes in the internal buffer and the usual ++ prolog according to the standard and write the result to RESBUF. ++ ++ IMPORTANT: On some systems it is required that RESBUF is correctly ++ aligned for a 32 bits value. */ ++void * ++__sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf) ++{ ++ /* Take yet unprocessed bytes into account. */ ++ uint32_t bytes = ctx->buflen; ++ size_t pad; ++ ++ /* Now count remaining bytes. */ ++ ctx->total[0] += bytes; ++ if (ctx->total[0] < bytes) ++ ++ctx->total[1]; ++ ++ pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; ++ memcpy (&ctx->buffer[bytes], fillbuf, pad); ++ ++ /* Put the 64-bit file length in *bits* at the end of the buffer. */ ++ *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3); ++ *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) | ++ (ctx->total[0] >> 29)); ++ ++ /* Process last bytes. */ ++ sha256_process_block (ctx->buffer, bytes + pad + 8, ctx); ++ ++ /* Put result from CTX in first 32 bytes following RESBUF. */ ++ for (unsigned int i = 0; i < 8; ++i) ++ ((uint32_t *) resbuf)[i] = SWAP (ctx->H[i]); ++ ++ return resbuf; ++} ++ ++ ++void ++__sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx) ++{ ++ /* When we already have some bits in our internal buffer concatenate ++ both inputs first. */ ++ if (ctx->buflen != 0) ++ { ++ size_t left_over = ctx->buflen; ++ size_t add = 128 - left_over > len ? len : 128 - left_over; ++ ++ memcpy (&ctx->buffer[left_over], buffer, add); ++ ctx->buflen += add; ++ ++ if (ctx->buflen > 64) ++ { ++ sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx); ++ ++ ctx->buflen &= 63; ++ /* The regions in the following copy operation cannot overlap. */ ++ memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63], ++ ctx->buflen); ++ } ++ ++ buffer = (const char *) buffer + add; ++ len -= add; ++ } ++ ++ /* Process available complete blocks. */ ++ if (len >= 64) ++ { ++#if __GNUC__ >= 2 ++# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0) ++#else ++# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0) ++#endif ++ if (UNALIGNED_P (buffer)) ++ while (len > 64) ++ { ++ sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); ++ buffer = (const char *) buffer + 64; ++ len -= 64; ++ } ++ else ++ { ++ sha256_process_block (buffer, len & ~63, ctx); ++ buffer = (const char *) buffer + (len & ~63); ++ len &= 63; ++ } ++ } ++ ++ /* Move remaining bytes into internal buffer. */ ++ if (len > 0) ++ { ++ size_t left_over = ctx->buflen; ++ ++ memcpy (&ctx->buffer[left_over], buffer, len); ++ left_over += len; ++ if (left_over >= 64) ++ { ++ sha256_process_block (ctx->buffer, 64, ctx); ++ left_over -= 64; ++ memcpy (ctx->buffer, &ctx->buffer[64], left_over); ++ } ++ ctx->buflen = left_over; ++ } ++} +diff --git a/libcrypt/sha256.h b/libcrypt/sha256.h +new file mode 100644 +index 0000000..291674f +--- /dev/null ++++ b/libcrypt/sha256.h +@@ -0,0 +1,58 @@ ++/* Declaration of functions and data types used for SHA256 sum computing ++ library functions. ++ Copyright (C) 2007 Free Software Foundation, Inc. ++ This file is part of the GNU C Library. ++ ++ The GNU C Library is free software; you can redistribute it and/or ++ modify it under the terms of the GNU Lesser General Public ++ License as published by the Free Software Foundation; either ++ version 2.1 of the License, or (at your option) any later version. ++ ++ The GNU C Library is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ++ Lesser General Public License for more details. ++ ++ You should have received a copy of the GNU Lesser General Public ++ License along with the GNU C Library; if not, write to the Free ++ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA ++ 02111-1307 USA. */ ++ ++#ifndef _SHA256_H ++#define _SHA256_H 1 ++ ++#include <limits.h> ++#include <stdint.h> ++#include <stdio.h> ++ ++ ++/* Structure to save state of computation between the single steps. */ ++struct sha256_ctx ++{ ++ uint32_t H[8]; ++ ++ uint32_t total[2]; ++ uint32_t buflen; ++ char buffer[128] __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); ++}; ++ ++/* Initialize structure containing state of computation. ++ (FIPS 180-2: 5.3.2) */ ++extern void __sha256_init_ctx (struct sha256_ctx *ctx) attribute_hidden; ++ ++/* Starting with the result of former calls of this function (or the ++ initialization function update the context for the next LEN bytes ++ starting at BUFFER. ++ It is NOT required that LEN is a multiple of 64. */ ++extern void __sha256_process_bytes (const void *buffer, size_t len, ++ struct sha256_ctx *ctx) attribute_hidden; ++ ++/* Process the remaining bytes in the buffer and put result from CTX ++ in first 32 bytes following RESBUF. ++ ++ IMPORTANT: On some systems it is required that RESBUF is correctly ++ aligned for a 32 bits value. */ ++extern void *__sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf) ++ attribute_hidden; ++ ++#endif /* sha256.h */ +-- +1.7.8 + |