diff options
| author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 | 
|---|---|---|
| committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 | 
| commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
| tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/e_pow.c | |
| parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) | |
| download | uClibc-alpine-7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2.tar.bz2 uClibc-alpine-7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2.tar.xz  | |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
 -Erik
Diffstat (limited to 'libm/e_pow.c')
| -rw-r--r-- | libm/e_pow.c | 308 | 
1 files changed, 308 insertions, 0 deletions
diff --git a/libm/e_pow.c b/libm/e_pow.c new file mode 100644 index 000000000..4f6a44f20 --- /dev/null +++ b/libm/e_pow.c @@ -0,0 +1,308 @@ +/* @(#)e_pow.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice  + * is preserved. + * ==================================================== + */ + +#if defined(LIBM_SCCS) && !defined(lint) +static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $"; +#endif + +/* __ieee754_pow(x,y) return x**y + * + *		      n + * Method:  Let x =  2   * (1+f) + *	1. Compute and return log2(x) in two pieces: + *		log2(x) = w1 + w2, + *	   where w1 has 53-24 = 29 bit trailing zeros. + *	2. Perform y*log2(x) = n+y' by simulating muti-precision  + *	   arithmetic, where |y'|<=0.5. + *	3. Return x**y = 2**n*exp(y'*log2) + * + * Special cases: + *	1.  (anything) ** 0  is 1 + *	2.  (anything) ** 1  is itself + *	3.  (anything) ** NAN is NAN + *	4.  NAN ** (anything except 0) is NAN + *	5.  +-(|x| > 1) **  +INF is +INF + *	6.  +-(|x| > 1) **  -INF is +0 + *	7.  +-(|x| < 1) **  +INF is +0 + *	8.  +-(|x| < 1) **  -INF is +INF + *	9.  +-1         ** +-INF is NAN + *	10. +0 ** (+anything except 0, NAN)               is +0 + *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0 + *	12. +0 ** (-anything except 0, NAN)               is +INF + *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF + *	14. -0 ** (odd integer) = -( +0 ** (odd integer) ) + *	15. +INF ** (+anything except 0,NAN) is +INF + *	16. +INF ** (-anything except 0,NAN) is +0 + *	17. -INF ** (anything)  = -0 ** (-anything) + *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) + *	19. (-anything except 0 and inf) ** (non-integer) is NAN + * + * Accuracy: + *	pow(x,y) returns x**y nearly rounded. In particular + *			pow(integer,integer) + *	always returns the correct integer provided it is  + *	representable. + * + * Constants : + * The hexadecimal values are the intended ones for the following  + * constants. The decimal values may be used, provided that the  + * compiler will convert from decimal to binary accurately enough  + * to produce the hexadecimal values shown. + */ + +#include "math.h" +#include "math_private.h" + +#ifdef __STDC__ +static const double  +#else +static double  +#endif +bp[] = {1.0, 1.5,}, +dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ +dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ +zero    =  0.0, +one	=  1.0, +two	=  2.0, +two53	=  9007199254740992.0,	/* 0x43400000, 0x00000000 */ +huge	=  1.0e300, +tiny    =  1.0e-300, +	/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ +L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ +L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ +L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ +L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ +L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ +L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ +P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ +P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ +P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ +P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ +P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ +lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ +lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ +lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ +ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ +cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ +cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ +cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ +ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ +ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ +ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ + +#ifdef __STDC__ +	double __ieee754_pow(double x, double y) +#else +	double __ieee754_pow(x,y) +	double x, y; +#endif +{ +	double z,ax,z_h,z_l,p_h,p_l; +	double y1,t1,t2,r,s,t,u,v,w; +	int32_t i,j,k,yisint,n; +	int32_t hx,hy,ix,iy; +	u_int32_t lx,ly; + +	EXTRACT_WORDS(hx,lx,x); +	EXTRACT_WORDS(hy,ly,y); +	ix = hx&0x7fffffff;  iy = hy&0x7fffffff; + +    /* y==zero: x**0 = 1 */ +	if((iy|ly)==0) return one; 	 + +    /* +-NaN return x+y */ +	if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || +	   iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))  +		return x+y;	 + +    /* determine if y is an odd int when x < 0 +     * yisint = 0	... y is not an integer +     * yisint = 1	... y is an odd int +     * yisint = 2	... y is an even int +     */ +	yisint  = 0; +	if(hx<0) {	 +	    if(iy>=0x43400000) yisint = 2; /* even integer y */ +	    else if(iy>=0x3ff00000) { +		k = (iy>>20)-0x3ff;	   /* exponent */ +		if(k>20) { +		    j = ly>>(52-k); +		    if((j<<(52-k))==ly) yisint = 2-(j&1); +		} else if(ly==0) { +		    j = iy>>(20-k); +		    if((j<<(20-k))==iy) yisint = 2-(j&1); +		} +	    }		 +	}  + +    /* special value of y */ +	if(ly==0) { 	 +	    if (iy==0x7ff00000) {	/* y is +-inf */ +	        if(((ix-0x3ff00000)|lx)==0) +		    return  y - y;	/* inf**+-1 is NaN */ +	        else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ +		    return (hy>=0)? y: zero; +	        else			/* (|x|<1)**-,+inf = inf,0 */ +		    return (hy<0)?-y: zero; +	    }  +	    if(iy==0x3ff00000) {	/* y is  +-1 */ +		if(hy<0) return one/x; else return x; +	    } +	    if(hy==0x40000000) return x*x; /* y is  2 */ +	    if(hy==0x3fe00000) {	/* y is  0.5 */ +		if(hx>=0)	/* x >= +0 */ +		return __ieee754_sqrt(x);	 +	    } +	} + +	ax   = fabs(x); +    /* special value of x */ +	if(lx==0) { +	    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ +		z = ax;			/*x is +-0,+-inf,+-1*/ +		if(hy<0) z = one/z;	/* z = (1/|x|) */ +		if(hx<0) { +		    if(((ix-0x3ff00000)|yisint)==0) { +			z = (z-z)/(z-z); /* (-1)**non-int is NaN */ +		    } else if(yisint==1)  +			z = -z;		/* (x<0)**odd = -(|x|**odd) */ +		} +		return z; +	    } +	} +     +    /* (x<0)**(non-int) is NaN */ +	if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); + +    /* |y| is huge */ +	if(iy>0x41e00000) { /* if |y| > 2**31 */ +	    if(iy>0x43f00000){	/* if |y| > 2**64, must o/uflow */ +		if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; +		if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; +	    } +	/* over/underflow if x is not close to one */ +	    if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; +	    if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; +	/* now |1-x| is tiny <= 2**-20, suffice to compute  +	   log(x) by x-x^2/2+x^3/3-x^4/4 */ +	    t = x-1;		/* t has 20 trailing zeros */ +	    w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); +	    u = ivln2_h*t;	/* ivln2_h has 21 sig. bits */ +	    v = t*ivln2_l-w*ivln2; +	    t1 = u+v; +	    SET_LOW_WORD(t1,0); +	    t2 = v-(t1-u); +	} else { +	    double s2,s_h,s_l,t_h,t_l; +	    n = 0; +	/* take care subnormal number */ +	    if(ix<0x00100000) +		{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } +	    n  += ((ix)>>20)-0x3ff; +	    j  = ix&0x000fffff; +	/* determine interval */ +	    ix = j|0x3ff00000;		/* normalize ix */ +	    if(j<=0x3988E) k=0;		/* |x|<sqrt(3/2) */ +	    else if(j<0xBB67A) k=1;	/* |x|<sqrt(3)   */ +	    else {k=0;n+=1;ix -= 0x00100000;} +	    SET_HIGH_WORD(ax,ix); + +	/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ +	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */ +	    v = one/(ax+bp[k]); +	    s = u*v; +	    s_h = s; +	    SET_LOW_WORD(s_h,0); +	/* t_h=ax+bp[k] High */ +	    t_h = zero; +	    SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); +	    t_l = ax - (t_h-bp[k]); +	    s_l = v*((u-s_h*t_h)-s_h*t_l); +	/* compute log(ax) */ +	    s2 = s*s; +	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); +	    r += s_l*(s_h+s); +	    s2  = s_h*s_h; +	    t_h = 3.0+s2+r; +	    SET_LOW_WORD(t_h,0); +	    t_l = r-((t_h-3.0)-s2); +	/* u+v = s*(1+...) */ +	    u = s_h*t_h; +	    v = s_l*t_h+t_l*s; +	/* 2/(3log2)*(s+...) */ +	    p_h = u+v; +	    SET_LOW_WORD(p_h,0); +	    p_l = v-(p_h-u); +	    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */ +	    z_l = cp_l*p_h+p_l*cp+dp_l[k]; +	/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ +	    t = (double)n; +	    t1 = (((z_h+z_l)+dp_h[k])+t); +	    SET_LOW_WORD(t1,0); +	    t2 = z_l-(((t1-t)-dp_h[k])-z_h); +	} + +	s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ +	if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0) +	    s = -one;/* (-ve)**(odd int) */ + +    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ +	y1  = y; +	SET_LOW_WORD(y1,0); +	p_l = (y-y1)*t1+y*t2; +	p_h = y1*t1; +	z = p_l+p_h; +	EXTRACT_WORDS(j,i,z); +	if (j>=0x40900000) {				/* z >= 1024 */ +	    if(((j-0x40900000)|i)!=0)			/* if z > 1024 */ +		return s*huge*huge;			/* overflow */ +	    else { +		if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */ +	    } +	} else if((j&0x7fffffff)>=0x4090cc00 ) {	/* z <= -1075 */ +	    if(((j-0xc090cc00)|i)!=0) 		/* z < -1075 */ +		return s*tiny*tiny;		/* underflow */ +	    else { +		if(p_l<=z-p_h) return s*tiny*tiny;	/* underflow */ +	    } +	} +    /* +     * compute 2**(p_h+p_l) +     */ +	i = j&0x7fffffff; +	k = (i>>20)-0x3ff; +	n = 0; +	if(i>0x3fe00000) {		/* if |z| > 0.5, set n = [z+0.5] */ +	    n = j+(0x00100000>>(k+1)); +	    k = ((n&0x7fffffff)>>20)-0x3ff;	/* new k for n */ +	    t = zero; +	    SET_HIGH_WORD(t,n&~(0x000fffff>>k)); +	    n = ((n&0x000fffff)|0x00100000)>>(20-k); +	    if(j<0) n = -n; +	    p_h -= t; +	}  +	t = p_l+p_h; +	SET_LOW_WORD(t,0); +	u = t*lg2_h; +	v = (p_l-(t-p_h))*lg2+t*lg2_l; +	z = u+v; +	w = v-(z-u); +	t  = z*z; +	t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); +	r  = (z*t1)/(t1-two)-(w+z*w); +	z  = one-(r-z); +	GET_HIGH_WORD(j,z); +	j += (n<<20); +	if((j>>20)<=0) z = scalbn(z,n);	/* subnormal output */ +	else SET_HIGH_WORD(z,j); +	return s*z; +}  | 
