summaryrefslogtreecommitdiffstats
path: root/libc/inet/ifaddrs.c
diff options
context:
space:
mode:
Diffstat (limited to 'libc/inet/ifaddrs.c')
-rw-r--r--libc/inet/ifaddrs.c873
1 files changed, 873 insertions, 0 deletions
diff --git a/libc/inet/ifaddrs.c b/libc/inet/ifaddrs.c
new file mode 100644
index 000000000..74f3622f8
--- /dev/null
+++ b/libc/inet/ifaddrs.c
@@ -0,0 +1,873 @@
+/* getifaddrs -- get names and addresses of all network interfaces
+ Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+#define time __time
+#define sendto __sendto
+#define recvmsg __recvmsg
+#define bind __bind
+#define mempcpy __mempcpy
+#define getsockname __getsockname
+
+#define __FORCE_GLIBC
+#include <features.h>
+#define __USE_GNU
+#include <alloca.h>
+#include <assert.h>
+#include <errno.h>
+/*#include <ifaddrs.h>*/
+#include <net/if.h>
+#include <netinet/in.h>
+#include <netpacket/packet.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/ioctl.h>
+#include <sys/socket.h>
+#include <libc-internal.h>
+#include <time.h>
+#include <unistd.h>
+
+#include "netlinkaccess.h"
+
+
+#ifndef __libc_use_alloca
+# define __libc_use_alloca(x) (x < __MAX_ALLOCA_CUTOFF)
+#endif
+
+
+#if __ASSUME_NETLINK_SUPPORT
+#if 0 /* unused code */
+/* struct to hold the data for one ifaddrs entry, so we can allocate
+ everything at once. */
+struct ifaddrs_storage
+{
+ struct ifaddrs ifa;
+ union
+ {
+ /* Save space for the biggest of the four used sockaddr types and
+ avoid a lot of casts. */
+ struct sockaddr sa;
+ struct sockaddr_ll sl;
+ struct sockaddr_in s4;
+ struct sockaddr_in6 s6;
+ } addr, netmask, broadaddr;
+ char name[IF_NAMESIZE + 1];
+};
+#endif /* unused code */
+
+
+void
+__netlink_free_handle (struct netlink_handle *h)
+{
+ struct netlink_res *ptr;
+ int saved_errno = errno;
+
+ ptr = h->nlm_list;
+ while (ptr != NULL)
+ {
+ struct netlink_res *tmpptr;
+
+ tmpptr = ptr->next;
+ free (ptr);
+ ptr = tmpptr;
+ }
+
+ __set_errno (saved_errno);
+}
+
+
+static int
+__netlink_sendreq (struct netlink_handle *h, int type)
+{
+ struct
+ {
+ struct nlmsghdr nlh;
+ struct rtgenmsg g;
+ } req;
+ struct sockaddr_nl nladdr;
+
+ if (h->seq == 0)
+ h->seq = time (NULL);
+
+ req.nlh.nlmsg_len = sizeof (req);
+ req.nlh.nlmsg_type = type;
+ req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
+ req.nlh.nlmsg_pid = 0;
+ req.nlh.nlmsg_seq = h->seq;
+ req.g.rtgen_family = AF_UNSPEC;
+
+ memset (&nladdr, '\0', sizeof (nladdr));
+ nladdr.nl_family = AF_NETLINK;
+
+ return TEMP_FAILURE_RETRY (__sendto (h->fd, (void *) &req, sizeof (req), 0,
+ (struct sockaddr *) &nladdr,
+ sizeof (nladdr)));
+}
+
+
+int
+__netlink_request (struct netlink_handle *h, int type)
+{
+ struct netlink_res *nlm_next;
+ struct netlink_res **new_nlm_list;
+ static volatile size_t buf_size = 4096;
+ char *buf;
+ struct sockaddr_nl nladdr;
+ struct nlmsghdr *nlmh;
+ ssize_t read_len;
+ bool done = false;
+ bool use_malloc = false;
+
+ if (__netlink_sendreq (h, type) < 0)
+ return -1;
+
+ size_t this_buf_size = buf_size;
+ if (__libc_use_alloca (this_buf_size))
+ buf = alloca (this_buf_size);
+ else
+ {
+ buf = malloc (this_buf_size);
+ if (buf != NULL)
+ use_malloc = true;
+ else
+ goto out_fail;
+ }
+
+ struct iovec iov = { buf, this_buf_size };
+
+ if (h->nlm_list != NULL)
+ new_nlm_list = &h->end_ptr->next;
+ else
+ new_nlm_list = &h->nlm_list;
+
+ while (! done)
+ {
+ struct msghdr msg =
+ {
+ (void *) &nladdr, sizeof (nladdr),
+ &iov, 1,
+ NULL, 0,
+ 0
+ };
+
+ read_len = TEMP_FAILURE_RETRY (__recvmsg (h->fd, &msg, 0));
+ if (read_len < 0)
+ goto out_fail;
+
+ if (nladdr.nl_pid != 0)
+ continue;
+
+ if (__builtin_expect (msg.msg_flags & MSG_TRUNC, 0))
+ {
+ if (this_buf_size >= SIZE_MAX / 2)
+ goto out_fail;
+
+ nlm_next = *new_nlm_list;
+ while (nlm_next != NULL)
+ {
+ struct netlink_res *tmpptr;
+
+ tmpptr = nlm_next->next;
+ free (nlm_next);
+ nlm_next = tmpptr;
+ }
+ *new_nlm_list = NULL;
+
+ if (__libc_use_alloca (2 * this_buf_size))
+ buf = extend_alloca (buf, this_buf_size, 2 * this_buf_size);
+ else
+ {
+ this_buf_size *= 2;
+
+ char *new_buf = realloc (use_malloc ? buf : NULL, this_buf_size);
+ if (new_buf == NULL)
+ goto out_fail;
+ new_buf = buf;
+
+ use_malloc = true;
+ }
+ buf_size = this_buf_size;
+
+ iov.iov_base = buf;
+ iov.iov_len = this_buf_size;
+
+ /* Increase sequence number, so that we can distinguish
+ between old and new request messages. */
+ h->seq++;
+
+ if (__netlink_sendreq (h, type) < 0)
+ goto out_fail;
+
+ continue;
+ }
+
+ size_t count = 0;
+ size_t remaining_len = read_len;
+ for (nlmh = (struct nlmsghdr *) buf;
+ NLMSG_OK (nlmh, remaining_len);
+ nlmh = (struct nlmsghdr *) NLMSG_NEXT (nlmh, remaining_len))
+ {
+ if ((pid_t) nlmh->nlmsg_pid != h->pid
+ || nlmh->nlmsg_seq != h->seq)
+ continue;
+
+ ++count;
+ if (nlmh->nlmsg_type == NLMSG_DONE)
+ {
+ /* We found the end, leave the loop. */
+ done = true;
+ break;
+ }
+ if (nlmh->nlmsg_type == NLMSG_ERROR)
+ {
+ struct nlmsgerr *nlerr = (struct nlmsgerr *) NLMSG_DATA (nlmh);
+ if (nlmh->nlmsg_len < NLMSG_LENGTH (sizeof (struct nlmsgerr)))
+ errno = EIO;
+ else
+ errno = -nlerr->error;
+ goto out_fail;
+ }
+ }
+
+ /* If there was nothing with the expected nlmsg_pid and nlmsg_seq,
+ there is no point to record it. */
+ if (count == 0)
+ continue;
+
+ nlm_next = (struct netlink_res *) malloc (sizeof (struct netlink_res)
+ + read_len);
+ if (nlm_next == NULL)
+ goto out_fail;
+ nlm_next->next = NULL;
+ nlm_next->nlh = memcpy (nlm_next + 1, buf, read_len);
+ nlm_next->size = read_len;
+ nlm_next->seq = h->seq;
+ if (h->nlm_list == NULL)
+ h->nlm_list = nlm_next;
+ else
+ h->end_ptr->next = nlm_next;
+ h->end_ptr = nlm_next;
+ }
+
+ if (use_malloc)
+ free (buf);
+ return 0;
+
+out_fail:
+ if (use_malloc)
+ free (buf);
+ return -1;
+}
+
+
+void
+__netlink_close (struct netlink_handle *h)
+{
+ /* Don't modify errno. */
+ int serrno = errno;
+ __close(h->fd);
+ __set_errno(serrno);
+}
+
+
+/* Open a NETLINK socket. */
+int
+__netlink_open (struct netlink_handle *h)
+{
+ struct sockaddr_nl nladdr;
+
+ h->fd = __socket (PF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
+ if (h->fd < 0)
+ goto out;
+
+ memset (&nladdr, '\0', sizeof (nladdr));
+ nladdr.nl_family = AF_NETLINK;
+ if (__bind (h->fd, (struct sockaddr *) &nladdr, sizeof (nladdr)) < 0)
+ {
+ close_and_out:
+ __netlink_close (h);
+ out:
+#if __ASSUME_NETLINK_SUPPORT == 0
+ __no_netlink_support = 1;
+#endif
+ return -1;
+ }
+ /* Determine the ID the kernel assigned for this netlink connection.
+ It is not necessarily the PID if there is more than one socket
+ open. */
+ socklen_t addr_len = sizeof (nladdr);
+ if (__getsockname (h->fd, (struct sockaddr *) &nladdr, &addr_len) < 0)
+ goto close_and_out;
+ h->pid = nladdr.nl_pid;
+ return 0;
+}
+
+
+#if 0 /* unused code */
+/* We know the number of RTM_NEWLINK entries, so we reserve the first
+ # of entries for this type. All RTM_NEWADDR entries have an index
+ pointer to the RTM_NEWLINK entry. To find the entry, create
+ a table to map kernel index entries to our index numbers.
+ Since we get at first all RTM_NEWLINK entries, it can never happen
+ that a RTM_NEWADDR index is not known to this map. */
+static int
+internal_function
+map_newlink (int index, struct ifaddrs_storage *ifas, int *map, int max)
+{
+ int i;
+
+ for (i = 0; i < max; i++)
+ {
+ if (map[i] == -1)
+ {
+ map[i] = index;
+ if (i > 0)
+ ifas[i - 1].ifa.ifa_next = &ifas[i].ifa;
+ return i;
+ }
+ else if (map[i] == index)
+ return i;
+ }
+ /* This should never be reached. If this will be reached, we have
+ a very big problem. */
+ abort ();
+}
+
+
+/* Create a linked list of `struct ifaddrs' structures, one for each
+ network interface on the host machine. If successful, store the
+ list in *IFAP and return 0. On errors, return -1 and set `errno'. */
+int
+getifaddrs (struct ifaddrs **ifap)
+{
+ struct netlink_handle nh = { 0, 0, 0, NULL, NULL };
+ struct netlink_res *nlp;
+ struct ifaddrs_storage *ifas;
+ unsigned int i, newlink, newaddr, newaddr_idx;
+ int *map_newlink_data;
+ size_t ifa_data_size = 0; /* Size to allocate for all ifa_data. */
+ char *ifa_data_ptr; /* Pointer to the unused part of memory for
+ ifa_data. */
+ int result = 0;
+
+ if (ifap)
+ *ifap = NULL;
+
+ if (! __no_netlink_support && __netlink_open (&nh) < 0)
+ {
+#if __ASSUME_NETLINK_SUPPORT != 0
+ return -1;
+#endif
+ }
+
+#if __ASSUME_NETLINK_SUPPORT == 0
+ if (__no_netlink_support)
+ return fallback_getifaddrs (ifap);
+#endif
+
+ /* Tell the kernel that we wish to get a list of all
+ active interfaces, collect all data for every interface. */
+ if (__netlink_request (&nh, RTM_GETLINK) < 0)
+ {
+ result = -1;
+ goto exit_free;
+ }
+
+ /* Now ask the kernel for all addresses which are assigned
+ to an interface and collect all data for every interface.
+ Since we store the addresses after the interfaces in the
+ list, we will later always find the interface before the
+ corresponding addresses. */
+ ++nh.seq;
+ if (__netlink_request (&nh, RTM_GETADDR) < 0)
+ {
+ result = -1;
+ goto exit_free;
+ }
+
+ /* Count all RTM_NEWLINK and RTM_NEWADDR entries to allocate
+ enough memory. */
+ newlink = newaddr = 0;
+ for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
+ {
+ struct nlmsghdr *nlh;
+ size_t size = nlp->size;
+
+ if (nlp->nlh == NULL)
+ continue;
+
+ /* Walk through all entries we got from the kernel and look, which
+ message type they contain. */
+ for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
+ {
+ /* Check if the message is what we want. */
+ if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
+ continue;
+
+ if (nlh->nlmsg_type == NLMSG_DONE)
+ break; /* ok */
+
+ if (nlh->nlmsg_type == RTM_NEWLINK)
+ {
+ /* A RTM_NEWLINK message can have IFLA_STATS data. We need to
+ know the size before creating the list to allocate enough
+ memory. */
+ struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
+ struct rtattr *rta = IFLA_RTA (ifim);
+ size_t rtasize = IFLA_PAYLOAD (nlh);
+
+ while (RTA_OK (rta, rtasize))
+ {
+ size_t rta_payload = RTA_PAYLOAD (rta);
+
+ if (rta->rta_type == IFLA_STATS)
+ {
+ ifa_data_size += rta_payload;
+ break;
+ }
+ else
+ rta = RTA_NEXT (rta, rtasize);
+ }
+ ++newlink;
+ }
+ else if (nlh->nlmsg_type == RTM_NEWADDR)
+ ++newaddr;
+ }
+ }
+
+ /* Return if no interface is up. */
+ if ((newlink + newaddr) == 0)
+ goto exit_free;
+
+ /* Allocate memory for all entries we have and initialize next
+ pointer. */
+ ifas = (struct ifaddrs_storage *) calloc (1,
+ (newlink + newaddr)
+ * sizeof (struct ifaddrs_storage)
+ + ifa_data_size);
+ if (ifas == NULL)
+ {
+ result = -1;
+ goto exit_free;
+ }
+
+ /* Table for mapping kernel index to entry in our list. */
+ map_newlink_data = alloca (newlink * sizeof (int));
+ memset (map_newlink_data, '\xff', newlink * sizeof (int));
+
+ ifa_data_ptr = (char *) &ifas[newlink + newaddr];
+ newaddr_idx = 0; /* Counter for newaddr index. */
+
+ /* Walk through the list of data we got from the kernel. */
+ for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
+ {
+ struct nlmsghdr *nlh;
+ size_t size = nlp->size;
+
+ if (nlp->nlh == NULL)
+ continue;
+
+ /* Walk through one message and look at the type: If it is our
+ message, we need RTM_NEWLINK/RTM_NEWADDR and stop if we reach
+ the end or we find the end marker (in this case we ignore the
+ following data. */
+ for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
+ {
+ int ifa_index = 0;
+
+ /* Check if the message is the one we want */
+ if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
+ continue;
+
+ if (nlh->nlmsg_type == NLMSG_DONE)
+ break; /* ok */
+
+ if (nlh->nlmsg_type == RTM_NEWLINK)
+ {
+ /* We found a new interface. Now extract everything from the
+ interface data we got and need. */
+ struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
+ struct rtattr *rta = IFLA_RTA (ifim);
+ size_t rtasize = IFLA_PAYLOAD (nlh);
+
+ /* Interfaces are stored in the first "newlink" entries
+ of our list, starting in the order as we got from the
+ kernel. */
+ ifa_index = map_newlink (ifim->ifi_index - 1, ifas,
+ map_newlink_data, newlink);
+ ifas[ifa_index].ifa.ifa_flags = ifim->ifi_flags;
+
+ while (RTA_OK (rta, rtasize))
+ {
+ char *rta_data = RTA_DATA (rta);
+ size_t rta_payload = RTA_PAYLOAD (rta);
+
+ switch (rta->rta_type)
+ {
+ case IFLA_ADDRESS:
+ if (rta_payload <= sizeof (ifas[ifa_index].addr))
+ {
+ ifas[ifa_index].addr.sl.sll_family = AF_PACKET;
+ memcpy (ifas[ifa_index].addr.sl.sll_addr,
+ (char *) rta_data, rta_payload);
+ ifas[ifa_index].addr.sl.sll_halen = rta_payload;
+ ifas[ifa_index].addr.sl.sll_ifindex
+ = ifim->ifi_index;
+ ifas[ifa_index].addr.sl.sll_hatype = ifim->ifi_type;
+
+ ifas[ifa_index].ifa.ifa_addr
+ = &ifas[ifa_index].addr.sa;
+ }
+ break;
+
+ case IFLA_BROADCAST:
+ if (rta_payload <= sizeof (ifas[ifa_index].broadaddr))
+ {
+ ifas[ifa_index].broadaddr.sl.sll_family = AF_PACKET;
+ memcpy (ifas[ifa_index].broadaddr.sl.sll_addr,
+ (char *) rta_data, rta_payload);
+ ifas[ifa_index].broadaddr.sl.sll_halen = rta_payload;
+ ifas[ifa_index].broadaddr.sl.sll_ifindex
+ = ifim->ifi_index;
+ ifas[ifa_index].broadaddr.sl.sll_hatype
+ = ifim->ifi_type;
+
+ ifas[ifa_index].ifa.ifa_broadaddr
+ = &ifas[ifa_index].broadaddr.sa;
+ }
+ break;
+
+ case IFLA_IFNAME: /* Name of Interface */
+ if ((rta_payload + 1) <= sizeof (ifas[ifa_index].name))
+ {
+ ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
+ *(char *) __mempcpy (ifas[ifa_index].name, rta_data,
+ rta_payload) = '\0';
+ }
+ break;
+
+ case IFLA_STATS: /* Statistics of Interface */
+ ifas[ifa_index].ifa.ifa_data = ifa_data_ptr;
+ ifa_data_ptr += rta_payload;
+ memcpy (ifas[ifa_index].ifa.ifa_data, rta_data,
+ rta_payload);
+ break;
+
+ case IFLA_UNSPEC:
+ break;
+ case IFLA_MTU:
+ break;
+ case IFLA_LINK:
+ break;
+ case IFLA_QDISC:
+ break;
+ default:
+ break;
+ }
+
+ rta = RTA_NEXT (rta, rtasize);
+ }
+ }
+ else if (nlh->nlmsg_type == RTM_NEWADDR)
+ {
+ struct ifaddrmsg *ifam = (struct ifaddrmsg *) NLMSG_DATA (nlh);
+ struct rtattr *rta = IFA_RTA (ifam);
+ size_t rtasize = IFA_PAYLOAD (nlh);
+
+ /* New Addresses are stored in the order we got them from
+ the kernel after the interfaces. Theoretically it is possible
+ that we have holes in the interface part of the list,
+ but we always have already the interface for this address. */
+ ifa_index = newlink + newaddr_idx;
+ ifas[ifa_index].ifa.ifa_flags
+ = ifas[map_newlink (ifam->ifa_index - 1, ifas,
+ map_newlink_data, newlink)].ifa.ifa_flags;
+ if (ifa_index > 0)
+ ifas[ifa_index - 1].ifa.ifa_next = &ifas[ifa_index].ifa;
+ ++newaddr_idx;
+
+ while (RTA_OK (rta, rtasize))
+ {
+ char *rta_data = RTA_DATA (rta);
+ size_t rta_payload = RTA_PAYLOAD (rta);
+
+ switch (rta->rta_type)
+ {
+ case IFA_ADDRESS:
+ {
+ struct sockaddr *sa;
+
+ if (ifas[ifa_index].ifa.ifa_addr != NULL)
+ {
+ /* In a point-to-poing network IFA_ADDRESS
+ contains the destination address, local
+ address is supplied in IFA_LOCAL attribute.
+ destination address and broadcast address
+ are stored in an union, so it doesn't matter
+ which name we use. */
+ ifas[ifa_index].ifa.ifa_broadaddr
+ = &ifas[ifa_index].broadaddr.sa;
+ sa = &ifas[ifa_index].broadaddr.sa;
+ }
+ else
+ {
+ ifas[ifa_index].ifa.ifa_addr
+ = &ifas[ifa_index].addr.sa;
+ sa = &ifas[ifa_index].addr.sa;
+ }
+
+ sa->sa_family = ifam->ifa_family;
+
+ switch (ifam->ifa_family)
+ {
+ case AF_INET:
+ /* Size must match that of an address for IPv4. */
+ if (rta_payload == 4)
+ memcpy (&((struct sockaddr_in *) sa)->sin_addr,
+ rta_data, rta_payload);
+ break;
+
+ case AF_INET6:
+ /* Size must match that of an address for IPv6. */
+ if (rta_payload == 16)
+ {
+ memcpy (&((struct sockaddr_in6 *) sa)->sin6_addr,
+ rta_data, rta_payload);
+ if (IN6_IS_ADDR_LINKLOCAL (rta_data)
+ || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
+ ((struct sockaddr_in6 *) sa)->sin6_scope_id
+ = ifam->ifa_index;
+ }
+ break;
+
+ default:
+ if (rta_payload <= sizeof (ifas[ifa_index].addr))
+ memcpy (sa->sa_data, rta_data, rta_payload);
+ break;
+ }
+ }
+ break;
+
+ case IFA_LOCAL:
+ if (ifas[ifa_index].ifa.ifa_addr != NULL)
+ {
+ /* If ifa_addr is set and we get IFA_LOCAL,
+ assume we have a point-to-point network.
+ Move address to correct field. */
+ ifas[ifa_index].broadaddr = ifas[ifa_index].addr;
+ ifas[ifa_index].ifa.ifa_broadaddr
+ = &ifas[ifa_index].broadaddr.sa;
+ memset (&ifas[ifa_index].addr, '\0',
+ sizeof (ifas[ifa_index].addr));
+ }
+
+ ifas[ifa_index].ifa.ifa_addr = &ifas[ifa_index].addr.sa;
+ ifas[ifa_index].ifa.ifa_addr->sa_family
+ = ifam->ifa_family;
+
+ switch (ifam->ifa_family)
+ {
+ case AF_INET:
+ /* Size must match that of an address for IPv4. */
+ if (rta_payload == 4)
+ memcpy (&ifas[ifa_index].addr.s4.sin_addr,
+ rta_data, rta_payload);
+ break;
+
+ case AF_INET6:
+ /* Size must match that of an address for IPv6. */
+ if (rta_payload == 16)
+ {
+ memcpy (&ifas[ifa_index].addr.s6.sin6_addr,
+ rta_data, rta_payload);
+ if (IN6_IS_ADDR_LINKLOCAL (rta_data)
+ || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
+ ifas[ifa_index].addr.s6.sin6_scope_id =
+ ifam->ifa_index;
+ }
+ break;
+
+ default:
+ if (rta_payload <= sizeof (ifas[ifa_index].addr))
+ memcpy (ifas[ifa_index].addr.sa.sa_data,
+ rta_data, rta_payload);
+ break;
+ }
+ break;
+
+ case IFA_BROADCAST:
+ /* We get IFA_BROADCAST, so IFA_LOCAL was too much. */
+ if (ifas[ifa_index].ifa.ifa_broadaddr != NULL)
+ memset (&ifas[ifa_index].broadaddr, '\0',
+ sizeof (ifas[ifa_index].broadaddr));
+
+ ifas[ifa_index].ifa.ifa_broadaddr
+ = &ifas[ifa_index].broadaddr.sa;
+ ifas[ifa_index].ifa.ifa_broadaddr->sa_family
+ = ifam->ifa_family;
+
+ switch (ifam->ifa_family)
+ {
+ case AF_INET:
+ /* Size must match that of an address for IPv4. */
+ if (rta_payload == 4)
+ memcpy (&ifas[ifa_index].broadaddr.s4.sin_addr,
+ rta_data, rta_payload);
+ break;
+
+ case AF_INET6:
+ /* Size must match that of an address for IPv6. */
+ if (rta_payload == 16)
+ {
+ memcpy (&ifas[ifa_index].broadaddr.s6.sin6_addr,
+ rta_data, rta_payload);
+ if (IN6_IS_ADDR_LINKLOCAL (rta_data)
+ || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
+ ifas[ifa_index].broadaddr.s6.sin6_scope_id
+ = ifam->ifa_index;
+ }
+ break;
+
+ default:
+ if (rta_payload <= sizeof (ifas[ifa_index].addr))
+ memcpy (&ifas[ifa_index].broadaddr.sa.sa_data,
+ rta_data, rta_payload);
+ break;
+ }
+ break;
+
+ case IFA_LABEL:
+ if (rta_payload + 1 <= sizeof (ifas[ifa_index].name))
+ {
+ ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
+ *(char *) __mempcpy (ifas[ifa_index].name, rta_data,
+ rta_payload) = '\0';
+ }
+ else
+ abort ();
+ break;
+
+ case IFA_UNSPEC:
+ break;
+ case IFA_CACHEINFO:
+ break;
+ default:
+ break;
+ }
+
+ rta = RTA_NEXT (rta, rtasize);
+ }
+
+ /* If we didn't get the interface name with the
+ address, use the name from the interface entry. */
+ if (ifas[ifa_index].ifa.ifa_name == NULL)
+ ifas[ifa_index].ifa.ifa_name
+ = ifas[map_newlink (ifam->ifa_index - 1, ifas,
+ map_newlink_data, newlink)].ifa.ifa_name;
+
+ /* Calculate the netmask. */
+ if (ifas[ifa_index].ifa.ifa_addr
+ && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_UNSPEC
+ && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_PACKET)
+ {
+ uint32_t max_prefixlen = 0;
+ char *cp = NULL;
+
+ ifas[ifa_index].ifa.ifa_netmask
+ = &ifas[ifa_index].netmask.sa;
+
+ switch (ifas[ifa_index].ifa.ifa_addr->sa_family)
+ {
+ case AF_INET:
+ cp = (char *) &ifas[ifa_index].netmask.s4.sin_addr;
+ max_prefixlen = 32;
+ break;
+
+ case AF_INET6:
+ cp = (char *) &ifas[ifa_index].netmask.s6.sin6_addr;
+ max_prefixlen = 128;
+ break;
+ }
+
+ ifas[ifa_index].ifa.ifa_netmask->sa_family
+ = ifas[ifa_index].ifa.ifa_addr->sa_family;
+
+ if (cp != NULL)
+ {
+ char c;
+ unsigned int preflen;
+
+ if ((max_prefixlen > 0) &&
+ (ifam->ifa_prefixlen > max_prefixlen))
+ preflen = max_prefixlen;
+ else
+ preflen = ifam->ifa_prefixlen;
+
+ for (i = 0; i < (preflen / 8); i++)
+ *cp++ = 0xff;
+ c = 0xff;
+ c <<= (8 - (preflen % 8));
+ *cp = c;
+ }
+ }
+ }
+ }
+ }
+
+ assert (ifa_data_ptr <= (char *) &ifas[newlink + newaddr] + ifa_data_size);
+
+ if (newaddr_idx > 0)
+ {
+ for (i = 0; i < newlink; ++i)
+ if (map_newlink_data[i] == -1)
+ {
+ /* We have fewer links then we anticipated. Adjust the
+ forward pointer to the first address entry. */
+ ifas[i - 1].ifa.ifa_next = &ifas[newlink].ifa;
+ }
+
+ if (i == 0 && newlink > 0)
+ /* No valid link, but we allocated memory. We have to
+ populate the first entry. */
+ memmove (ifas, &ifas[newlink], sizeof (struct ifaddrs_storage));
+ }
+
+ if (ifap != NULL)
+ *ifap = &ifas[0].ifa;
+
+ exit_free:
+ __netlink_free_handle (&nh);
+ __netlink_close (&nh);
+
+ return result;
+}
+
+
+#if __ASSUME_NETLINK_SUPPORT != 0
+void
+freeifaddrs (struct ifaddrs *ifa)
+{
+ free (ifa);
+}
+#endif
+
+#endif /* unused code */
+
+#endif /* __ASSUME_NETLINK_SUPPORT */