diff options
Diffstat (limited to 'libm/double/incbi.c')
| -rw-r--r-- | libm/double/incbi.c | 313 | 
1 files changed, 313 insertions, 0 deletions
diff --git a/libm/double/incbi.c b/libm/double/incbi.c new file mode 100644 index 000000000..817219c4a --- /dev/null +++ b/libm/double/incbi.c @@ -0,0 +1,313 @@ +/*							incbi() + * + *      Inverse of imcomplete beta integral + * + * + * + * SYNOPSIS: + * + * double a, b, x, y, incbi(); + * + * x = incbi( a, b, y ); + * + * + * + * DESCRIPTION: + * + * Given y, the function finds x such that + * + *  incbet( a, b, x ) = y . + * + * The routine performs interval halving or Newton iterations to find the + * root of incbet(a,b,x) - y = 0. + * + * + * ACCURACY: + * + *                      Relative error: + *                x     a,b + * arithmetic   domain  domain  # trials    peak       rms + *    IEEE      0,1    .5,10000   50000    5.8e-12   1.3e-13 + *    IEEE      0,1   .25,100    100000    1.8e-13   3.9e-15 + *    IEEE      0,1     0,5       50000    1.1e-12   5.5e-15 + *    VAX       0,1    .5,100     25000    3.5e-14   1.1e-15 + * With a and b constrained to half-integer or integer values: + *    IEEE      0,1    .5,10000   50000    5.8e-12   1.1e-13 + *    IEEE      0,1    .5,100    100000    1.7e-14   7.9e-16 + * With a = .5, b constrained to half-integer or integer values: + *    IEEE      0,1    .5,10000   10000    8.3e-11   1.0e-11 + */ + + +/* +Cephes Math Library Release 2.8:  June, 2000 +Copyright 1984, 1996, 2000 by Stephen L. Moshier +*/ + +#include <math.h> + +extern double MACHEP, MAXNUM, MAXLOG, MINLOG; +#ifdef ANSIPROT +extern double ndtri ( double ); +extern double exp ( double ); +extern double fabs ( double ); +extern double log ( double ); +extern double sqrt ( double ); +extern double lgam ( double ); +extern double incbet ( double, double, double ); +#else +double ndtri(), exp(), fabs(), log(), sqrt(), lgam(), incbet(); +#endif + +double incbi( aa, bb, yy0 ) +double aa, bb, yy0; +{ +double a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt; +int i, rflg, dir, nflg; + + +i = 0; +if( yy0 <= 0 ) +	return(0.0); +if( yy0 >= 1.0 ) +	return(1.0); +x0 = 0.0; +yl = 0.0; +x1 = 1.0; +yh = 1.0; +nflg = 0; + +if( aa <= 1.0 || bb <= 1.0 ) +	{ +	dithresh = 1.0e-6; +	rflg = 0; +	a = aa; +	b = bb; +	y0 = yy0; +	x = a/(a+b); +	y = incbet( a, b, x ); +	goto ihalve; +	} +else +	{ +	dithresh = 1.0e-4; +	} +/* approximation to inverse function */ + +yp = -ndtri(yy0); + +if( yy0 > 0.5 ) +	{ +	rflg = 1; +	a = bb; +	b = aa; +	y0 = 1.0 - yy0; +	yp = -yp; +	} +else +	{ +	rflg = 0; +	a = aa; +	b = bb; +	y0 = yy0; +	} + +lgm = (yp * yp - 3.0)/6.0; +x = 2.0/( 1.0/(2.0*a-1.0)  +  1.0/(2.0*b-1.0) ); +d = yp * sqrt( x + lgm ) / x +	- ( 1.0/(2.0*b-1.0) - 1.0/(2.0*a-1.0) ) +	* (lgm + 5.0/6.0 - 2.0/(3.0*x)); +d = 2.0 * d; +if( d < MINLOG ) +	{ +	x = 1.0; +	goto under; +	} +x = a/( a + b * exp(d) ); +y = incbet( a, b, x ); +yp = (y - y0)/y0; +if( fabs(yp) < 0.2 ) +	goto newt; + +/* Resort to interval halving if not close enough. */ +ihalve: + +dir = 0; +di = 0.5; +for( i=0; i<100; i++ ) +	{ +	if( i != 0 ) +		{ +		x = x0  +  di * (x1 - x0); +		if( x == 1.0 ) +			x = 1.0 - MACHEP; +		if( x == 0.0 ) +			{ +			di = 0.5; +			x = x0  +  di * (x1 - x0); +			if( x == 0.0 ) +				goto under; +			} +		y = incbet( a, b, x ); +		yp = (x1 - x0)/(x1 + x0); +		if( fabs(yp) < dithresh ) +			goto newt; +		yp = (y-y0)/y0; +		if( fabs(yp) < dithresh ) +			goto newt; +		} +	if( y < y0 ) +		{ +		x0 = x; +		yl = y; +		if( dir < 0 ) +			{ +			dir = 0; +			di = 0.5; +			} +		else if( dir > 3 ) +			di = 1.0 - (1.0 - di) * (1.0 - di); +		else if( dir > 1 ) +			di = 0.5 * di + 0.5;  +		else +			di = (y0 - y)/(yh - yl); +		dir += 1; +		if( x0 > 0.75 ) +			{ +			if( rflg == 1 ) +				{ +				rflg = 0; +				a = aa; +				b = bb; +				y0 = yy0; +				} +			else +				{ +				rflg = 1; +				a = bb; +				b = aa; +				y0 = 1.0 - yy0; +				} +			x = 1.0 - x; +			y = incbet( a, b, x ); +			x0 = 0.0; +			yl = 0.0; +			x1 = 1.0; +			yh = 1.0; +			goto ihalve; +			} +		} +	else +		{ +		x1 = x; +		if( rflg == 1 && x1 < MACHEP ) +			{ +			x = 0.0; +			goto done; +			} +		yh = y; +		if( dir > 0 ) +			{ +			dir = 0; +			di = 0.5; +			} +		else if( dir < -3 ) +			di = di * di; +		else if( dir < -1 ) +			di = 0.5 * di; +		else +			di = (y - y0)/(yh - yl); +		dir -= 1; +		} +	} +mtherr( "incbi", PLOSS ); +if( x0 >= 1.0 ) +	{ +	x = 1.0 - MACHEP; +	goto done; +	} +if( x <= 0.0 ) +	{ +under: +	mtherr( "incbi", UNDERFLOW ); +	x = 0.0; +	goto done; +	} + +newt: + +if( nflg ) +	goto done; +nflg = 1; +lgm = lgam(a+b) - lgam(a) - lgam(b); + +for( i=0; i<8; i++ ) +	{ +	/* Compute the function at this point. */ +	if( i != 0 ) +		y = incbet(a,b,x); +	if( y < yl ) +		{ +		x = x0; +		y = yl; +		} +	else if( y > yh ) +		{ +		x = x1; +		y = yh; +		} +	else if( y < y0 ) +		{ +		x0 = x; +		yl = y; +		} +	else +		{ +		x1 = x; +		yh = y; +		} +	if( x == 1.0 || x == 0.0 ) +		break; +	/* Compute the derivative of the function at this point. */ +	d = (a - 1.0) * log(x) + (b - 1.0) * log(1.0-x) + lgm; +	if( d < MINLOG ) +		goto done; +	if( d > MAXLOG ) +		break; +	d = exp(d); +	/* Compute the step to the next approximation of x. */ +	d = (y - y0)/d; +	xt = x - d; +	if( xt <= x0 ) +		{ +		y = (x - x0) / (x1 - x0); +		xt = x0 + 0.5 * y * (x - x0); +		if( xt <= 0.0 ) +			break; +		} +	if( xt >= x1 ) +		{ +		y = (x1 - x) / (x1 - x0); +		xt = x1 - 0.5 * y * (x1 - x); +		if( xt >= 1.0 ) +			break; +		} +	x = xt; +	if( fabs(d/x) < 128.0 * MACHEP ) +		goto done; +	} +/* Did not converge.  */ +dithresh = 256.0 * MACHEP; +goto ihalve; + +done: + +if( rflg ) +	{ +	if( x <= MACHEP ) +		x = 1.0 - MACHEP; +	else +		x = 1.0 - x; +	} +return( x ); +}  | 
