diff options
Diffstat (limited to 'libm/double/polmisc.c')
| -rw-r--r-- | libm/double/polmisc.c | 309 | 
1 files changed, 0 insertions, 309 deletions
diff --git a/libm/double/polmisc.c b/libm/double/polmisc.c deleted file mode 100644 index 7d517ae69..000000000 --- a/libm/double/polmisc.c +++ /dev/null @@ -1,309 +0,0 @@ - -/* Square root, sine, cosine, and arctangent of polynomial. - * See polyn.c for data structures and discussion. - */ - -#include <stdio.h> -#include <math.h> -#ifdef ANSIPROT -extern double atan2 ( double, double ); -extern double sqrt ( double ); -extern double fabs ( double ); -extern double sin ( double ); -extern double cos ( double ); -extern void polclr ( double *a, int n ); -extern void polmov ( double *a, int na, double *b ); -extern void polmul ( double a[], int na, double b[], int nb, double c[] ); -extern void poladd ( double a[], int na, double b[], int nb, double c[] ); -extern void polsub ( double a[], int na, double b[], int nb, double c[] ); -extern int poldiv ( double a[], int na, double b[], int nb, double c[] ); -extern void polsbt ( double a[], int na, double b[], int nb, double c[] ); -extern void * malloc ( long ); -extern void free ( void * ); -#else -double atan2(), sqrt(), fabs(), sin(), cos(); -void polclr(), polmov(), polsbt(), poladd(), polsub(), polmul(); -int poldiv(); -void * malloc(); -void free (); -#endif - -/* Highest degree of polynomial to be handled -   by the polyn.c subroutine package.  */ -#define N 16 -/* Highest degree actually initialized at runtime.  */ -extern int MAXPOL; - -/* Taylor series coefficients for various functions - */ -double patan[N+1] = { -  0.0,     1.0,      0.0, -1.0/3.0,     0.0, -  1.0/5.0, 0.0, -1.0/7.0,      0.0, 1.0/9.0, 0.0, -1.0/11.0, -  0.0, 1.0/13.0, 0.0, -1.0/15.0, 0.0 }; - -double psin[N+1] = { -  0.0, 1.0, 0.0,   -1.0/6.0,  0.0, 1.0/120.0,  0.0, -  -1.0/5040.0, 0.0, 1.0/362880.0, 0.0, -1.0/39916800.0, -  0.0, 1.0/6227020800.0, 0.0, -1.0/1.307674368e12, 0.0}; - -double pcos[N+1] = { -  1.0, 0.0,   -1.0/2.0,  0.0, 1.0/24.0,  0.0, -  -1.0/720.0, 0.0, 1.0/40320.0, 0.0, -1.0/3628800.0, 0.0, -  1.0/479001600.0, 0.0, -1.0/8.7179291e10, 0.0, 1.0/2.0922789888e13}; - -double pasin[N+1] = { -  0.0,     1.0,  0.0, 1.0/6.0,  0.0, -  3.0/40.0, 0.0, 15.0/336.0, 0.0, 105.0/3456.0, 0.0, 945.0/42240.0, -  0.0, 10395.0/599040.0 , 0.0, 135135.0/9676800.0 , 0.0 -}; - -/* Square root of 1 + x.  */ -double psqrt[N+1] = { -  1.0, 1./2., -1./8., 1./16., -5./128., 7./256., -21./1024., 33./2048., -  -429./32768., 715./65536., -2431./262144., 4199./524288., -29393./4194304., -  52003./8388608., -185725./33554432., 334305./67108864., -  -9694845./2147483648.}; - -/* Arctangent of the ratio num/den of two polynomials. - */ -void -polatn( num, den, ans, nn ) -     double num[], den[], ans[]; -     int nn; -{ -  double a, t; -  double *polq, *polu, *polt; -  int i; - -  if (nn > N) -    { -      mtherr ("polatn", OVERFLOW); -      return; -    } -  /* arctan( a + b ) = arctan(a) + arctan( b/(1 + ab + a**2) ) */ -  t = num[0]; -  a = den[0]; -  if( (t == 0.0) && (a == 0.0 ) ) -    { -      t = num[1]; -      a = den[1]; -    } -  t = atan2( t, a );  /* arctan(num/den), the ANSI argument order */ -  polq = (double * )malloc( (MAXPOL+1) * sizeof (double) ); -  polu = (double * )malloc( (MAXPOL+1) * sizeof (double) ); -  polt = (double * )malloc( (MAXPOL+1) * sizeof (double) ); -  polclr( polq, MAXPOL ); -  i = poldiv( den, nn, num, nn, polq ); -  a = polq[0]; /* a */ -  polq[0] = 0.0; /* b */ -  polmov( polq, nn, polu ); /* b */ -  /* Form the polynomial -     1 + ab + a**2 -     where a is a scalar.  */ -  for( i=0; i<=nn; i++ ) -    polu[i] *= a; -  polu[0] += 1.0 + a * a; -  poldiv( polu, nn, polq, nn, polt ); /* divide into b */ -  polsbt( polt, nn, patan, nn, polu ); /* arctan(b)  */ -  polu[0] += t; /* plus arctan(a) */ -  polmov( polu, nn, ans ); -  free( polt ); -  free( polu ); -  free( polq ); -} - - - -/* Square root of a polynomial. - * Assumes the lowest degree nonzero term is dominant - * and of even degree.  An error message is given - * if the Newton iteration does not converge. - */ -void -polsqt( pol, ans, nn ) -     double pol[], ans[]; -     int nn; -{ -  double t; -  double *x, *y; -  int i, n; -#if 0 -  double z[N+1]; -  double u; -#endif - -  if (nn > N) -    { -      mtherr ("polatn", OVERFLOW); -      return; -    } -  x = (double * )malloc( (MAXPOL+1) * sizeof (double) ); -  y = (double * )malloc( (MAXPOL+1) * sizeof (double) ); -  polmov( pol, nn, x ); -  polclr( y, MAXPOL ); - -  /* Find lowest degree nonzero term.  */ -  t = 0.0; -  for( n=0; n<nn; n++ ) -    { -      if( x[n] != 0.0 ) -	goto nzero; -    } -  polmov( y, nn, ans ); -  return; - -nzero: - -  if( n > 0 ) -    { -      if (n & 1) -        { -	  printf("error, sqrt of odd polynomial\n"); -	  return; -	} -      /* Divide by x^n.  */ -      y[n] = x[n]; -      poldiv (y, nn, pol, N, x); -    } - -  t = x[0]; -  for( i=1; i<=nn; i++ ) -    x[i] /= t; -  x[0] = 0.0; -  /* series development sqrt(1+x) = 1  +  x / 2  -  x**2 / 8  +  x**3 / 16 -     hopes that first (constant) term is greater than what follows   */ -  polsbt( x, nn, psqrt, nn, y); -  t = sqrt( t ); -  for( i=0; i<=nn; i++ ) -    y[i] *= t; - -  /* If first nonzero coefficient was at degree n > 0, multiply by -     x^(n/2).  */ -  if (n > 0) -    { -      polclr (x, MAXPOL); -      x[n/2] = 1.0; -      polmul (x, nn, y, nn, y); -    } -#if 0 -/* Newton iterations */ -for( n=0; n<10; n++ ) -	{ -	poldiv( y, nn, pol, nn, z ); -	poladd( y, nn, z, nn, y ); -	for( i=0; i<=nn; i++ ) -		y[i] *= 0.5; -	for( i=0; i<=nn; i++ ) -		{ -		u = fabs( y[i] - z[i] ); -		if( u > 1.0e-15 ) -			goto more; -		} -	goto done; -more:	; -	} -printf( "square root did not converge\n" ); -done: -#endif /* 0 */ - -polmov( y, nn, ans ); -free( y ); -free( x ); -} - - - -/* Sine of a polynomial. - * The computation uses - *     sin(a+b) = sin(a) cos(b) + cos(a) sin(b) - * where a is the constant term of the polynomial and - * b is the sum of the rest of the terms. - * Since sin(b) and cos(b) are computed by series expansions, - * the value of b should be small. - */ -void -polsin( x, y, nn ) -     double x[], y[]; -     int nn; -{ -  double a, sc; -  double *w, *c; -  int i; - -  if (nn > N) -    { -      mtherr ("polatn", OVERFLOW); -      return; -    } -  w = (double * )malloc( (MAXPOL+1) * sizeof (double) ); -  c = (double * )malloc( (MAXPOL+1) * sizeof (double) ); -  polmov( x, nn, w ); -  polclr( c, MAXPOL ); -  polclr( y, nn ); -  /* a, in the description, is x[0].  b is the polynomial x - x[0].  */ -  a = w[0]; -  /* c = cos (b) */ -  w[0] = 0.0; -  polsbt( w, nn, pcos, nn, c ); -  sc = sin(a); -  /* sin(a) cos (b) */ -  for( i=0; i<=nn; i++ ) -    c[i] *= sc; -  /* y = sin (b)  */ -  polsbt( w, nn, psin, nn, y ); -  sc = cos(a); -  /* cos(a) sin(b) */ -  for( i=0; i<=nn; i++ ) -    y[i] *= sc; -  poladd( c, nn, y, nn, y ); -  free( c ); -  free( w ); -} - - -/* Cosine of a polynomial. - * The computation uses - *     cos(a+b) = cos(a) cos(b) - sin(a) sin(b) - * where a is the constant term of the polynomial and - * b is the sum of the rest of the terms. - * Since sin(b) and cos(b) are computed by series expansions, - * the value of b should be small. - */ -void -polcos( x, y, nn ) -     double x[], y[]; -     int nn; -{ -  double a, sc; -  double *w, *c; -  int i; -  double sin(), cos(); - -  if (nn > N) -    { -      mtherr ("polatn", OVERFLOW); -      return; -    } -  w = (double * )malloc( (MAXPOL+1) * sizeof (double) ); -  c = (double * )malloc( (MAXPOL+1) * sizeof (double) ); -  polmov( x, nn, w ); -  polclr( c, MAXPOL ); -  polclr( y, nn ); -  a = w[0]; -  w[0] = 0.0; -  /* c = cos(b)  */ -  polsbt( w, nn, pcos, nn, c ); -  sc = cos(a); -  /* cos(a) cos(b)  */ -  for( i=0; i<=nn; i++ ) -    c[i] *= sc; -  /* y = sin(b) */ -  polsbt( w, nn, psin, nn, y ); -  sc = sin(a); -  /* sin(a) sin(b) */ -  for( i=0; i<=nn; i++ ) -    y[i] *= sc; -  polsub( y, nn, c, nn, y ); -  free( c ); -  free( w ); -}  | 
