diff options
Diffstat (limited to 'libm/float/stdtrf.c')
| -rw-r--r-- | libm/float/stdtrf.c | 154 | 
1 files changed, 154 insertions, 0 deletions
| diff --git a/libm/float/stdtrf.c b/libm/float/stdtrf.c new file mode 100644 index 000000000..76b14c1f6 --- /dev/null +++ b/libm/float/stdtrf.c @@ -0,0 +1,154 @@ +/*							stdtrf.c + * + *	Student's t distribution + * + * + * + * SYNOPSIS: + * + * float t, stdtrf(); + * short k; + * + * y = stdtrf( k, t ); + * + * + * DESCRIPTION: + * + * Computes the integral from minus infinity to t of the Student + * t distribution with integer k > 0 degrees of freedom: + * + *                                      t + *                                      - + *                                     | | + *              -                      |         2   -(k+1)/2 + *             | ( (k+1)/2 )           |  (     x   ) + *       ----------------------        |  ( 1 + --- )        dx + *                     -               |  (      k  ) + *       sqrt( k pi ) | ( k/2 )        | + *                                   | | + *                                    - + *                                   -inf. + *  + * Relation to incomplete beta integral: + * + *        1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z ) + * where + *        z = k/(k + t**2). + * + * For t < -1, this is the method of computation.  For higher t, + * a direct method is derived from integration by parts. + * Since the function is symmetric about t=0, the area under the + * right tail of the density is found by calling the function + * with -t instead of t. + *  + * ACCURACY: + * + *                      Relative error: + * arithmetic   domain     # trials      peak         rms + *    IEEE      +/- 100      5000       2.3e-5      2.9e-6 + */ + + +/* +Cephes Math Library Release 2.2:  July, 1992 +Copyright 1984, 1987, 1992 by Stephen L. Moshier +Direct inquiries to 30 Frost Street, Cambridge, MA 02140 +*/ + +#include <math.h> + +extern float PIF, MACHEPF; + +#ifdef ANSIC +float sqrtf(float), atanf(float), incbetf(float, float, float); +#else +float sqrtf(), atanf(), incbetf(); +#endif + + + +float stdtrf( int k, float tt ) +{ +float t, x, rk, z, f, tz, p, xsqk; +int j; + +t = tt; +if( k <= 0 ) +	{ +	mtherr( "stdtrf", DOMAIN ); +	return(0.0); +	} + +if( t == 0 ) +	return( 0.5 ); + +if( t < -1.0 ) +	{ +	rk = k; +	z = rk / (rk + t * t); +	p = 0.5 * incbetf( 0.5*rk, 0.5, z ); +	return( p ); +	} + +/*	compute integral from -t to + t */ + +if( t < 0 ) +	x = -t; +else +	x = t; + +rk = k;	/* degrees of freedom */ +z = 1.0 + ( x * x )/rk; + +/* test if k is odd or even */ +if( (k & 1) != 0) +	{ + +	/*	computation for odd k	*/ + +	xsqk = x/sqrtf(rk); +	p = atanf( xsqk ); +	if( k > 1 ) +		{ +		f = 1.0; +		tz = 1.0; +		j = 3; +		while(  (j<=(k-2)) && ( (tz/f) > MACHEPF )  ) +			{ +			tz *= (j-1)/( z * j ); +			f += tz; +			j += 2; +			} +		p += f * xsqk/z; +		} +	p *= 2.0/PIF; +	} + + +else +	{ + +	/*	computation for even k	*/ + +	f = 1.0; +	tz = 1.0; +	j = 2; + +	while(  ( j <= (k-2) ) && ( (tz/f) > MACHEPF )  ) +		{ +		tz *= (j - 1)/( z * j ); +		f += tz; +		j += 2; +		} +	p = f * x/sqrtf(z*rk); +	} + +/*	common exit	*/ + + +if( t < 0 ) +	p = -p;	/* note destruction of relative accuracy */ + +	p = 0.5 + 0.5 * p; +return(p); +} | 
