diff options
Diffstat (limited to 'libm/k_rem_pio2.c')
| -rw-r--r-- | libm/k_rem_pio2.c | 320 | 
1 files changed, 320 insertions, 0 deletions
diff --git a/libm/k_rem_pio2.c b/libm/k_rem_pio2.c new file mode 100644 index 000000000..7ff69a4c7 --- /dev/null +++ b/libm/k_rem_pio2.c @@ -0,0 +1,320 @@ +/* @(#)k_rem_pio2.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice  + * is preserved. + * ==================================================== + */ + +#if defined(LIBM_SCCS) && !defined(lint) +static char rcsid[] = "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $"; +#endif + +/* + * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) + * double x[],y[]; int e0,nx,prec; int ipio2[]; + *  + * __kernel_rem_pio2 return the last three digits of N with  + *		y = x - N*pi/2 + * so that |y| < pi/2. + * + * The method is to compute the integer (mod 8) and fraction parts of  + * (2/pi)*x without doing the full multiplication. In general we + * skip the part of the product that are known to be a huge integer ( + * more accurately, = 0 mod 8 ). Thus the number of operations are + * independent of the exponent of the input. + * + * (2/pi) is represented by an array of 24-bit integers in ipio2[]. + * + * Input parameters: + * 	x[]	The input value (must be positive) is broken into nx  + *		pieces of 24-bit integers in double precision format. + *		x[i] will be the i-th 24 bit of x. The scaled exponent  + *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0  + *		match x's up to 24 bits. + * + *		Example of breaking a double positive z into x[0]+x[1]+x[2]: + *			e0 = ilogb(z)-23 + *			z  = scalbn(z,-e0) + *		for i = 0,1,2 + *			x[i] = floor(z) + *			z    = (z-x[i])*2**24 + * + * + *	y[]	ouput result in an array of double precision numbers. + *		The dimension of y[] is: + *			24-bit  precision	1 + *			53-bit  precision	2 + *			64-bit  precision	2 + *			113-bit precision	3 + *		The actual value is the sum of them. Thus for 113-bit + *		precison, one may have to do something like: + * + *		long double t,w,r_head, r_tail; + *		t = (long double)y[2] + (long double)y[1]; + *		w = (long double)y[0]; + *		r_head = t+w; + *		r_tail = w - (r_head - t); + * + *	e0	The exponent of x[0] + * + *	nx	dimension of x[] + * + *  	prec	an integer indicating the precision: + *			0	24  bits (single) + *			1	53  bits (double) + *			2	64  bits (extended) + *			3	113 bits (quad) + * + *	ipio2[] + *		integer array, contains the (24*i)-th to (24*i+23)-th  + *		bit of 2/pi after binary point. The corresponding  + *		floating value is + * + *			ipio2[i] * 2^(-24(i+1)). + * + * External function: + *	double scalbn(), floor(); + * + * + * Here is the description of some local variables: + * + * 	jk	jk+1 is the initial number of terms of ipio2[] needed + *		in the computation. The recommended value is 2,3,4, + *		6 for single, double, extended,and quad. + * + * 	jz	local integer variable indicating the number of  + *		terms of ipio2[] used.  + * + *	jx	nx - 1 + * + *	jv	index for pointing to the suitable ipio2[] for the + *		computation. In general, we want + *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 + *		is an integer. Thus + *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv + *		Hence jv = max(0,(e0-3)/24). + * + *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk. + * + * 	q[]	double array with integral value, representing the + *		24-bits chunk of the product of x and 2/pi. + * + *	q0	the corresponding exponent of q[0]. Note that the + *		exponent for q[i] would be q0-24*i. + * + *	PIo2[]	double precision array, obtained by cutting pi/2 + *		into 24 bits chunks.  + * + *	f[]	ipio2[] in floating point  + * + *	iq[]	integer array by breaking up q[] in 24-bits chunk. + * + *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk] + * + *	ih	integer. If >0 it indicates q[] is >= 0.5, hence + *		it also indicates the *sign* of the result. + * + */ + + +/* + * Constants: + * The hexadecimal values are the intended ones for the following  + * constants. The decimal values may be used, provided that the  + * compiler will convert from decimal to binary accurately enough  + * to produce the hexadecimal values shown. + */ + +#include "math.h" +#include "math_private.h" + +#ifdef __STDC__ +static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ +#else +static int init_jk[] = {2,3,4,6};  +#endif + +#ifdef __STDC__ +static const double PIo2[] = { +#else +static double PIo2[] = { +#endif +  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ +  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ +  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ +  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ +  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ +  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ +  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ +  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ +}; + +#ifdef __STDC__ +static const double			 +#else +static double			 +#endif +zero   = 0.0, +one    = 1.0, +two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ +twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ + +#ifdef __STDC__ +	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)  +#else +	int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) 	 +	double x[], y[]; int e0,nx,prec; int32_t ipio2[]; +#endif +{ +	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; +	double z,fw,f[20],fq[20],q[20]; + +    /* initialize jk*/ +	jk = init_jk[prec]; +	jp = jk; + +    /* determine jx,jv,q0, note that 3>q0 */ +	jx =  nx-1; +	jv = (e0-3)/24; if(jv<0) jv=0; +	q0 =  e0-24*(jv+1); + +    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ +	j = jv-jx; m = jx+jk; +	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; + +    /* compute q[0],q[1],...q[jk] */ +	for (i=0;i<=jk;i++) { +	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; +	} + +	jz = jk; +recompute: +    /* distill q[] into iq[] reversingly */ +	for(i=0,j=jz,z=q[jz];j>0;i++,j--) { +	    fw    =  (double)((int32_t)(twon24* z)); +	    iq[i] =  (int32_t)(z-two24*fw); +	    z     =  q[j-1]+fw; +	} + +    /* compute n */ +	z  = scalbn(z,q0);		/* actual value of z */ +	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */ +	n  = (int32_t) z; +	z -= (double)n; +	ih = 0; +	if(q0>0) {	/* need iq[jz-1] to determine n */ +	    i  = (iq[jz-1]>>(24-q0)); n += i; +	    iq[jz-1] -= i<<(24-q0); +	    ih = iq[jz-1]>>(23-q0); +	}  +	else if(q0==0) ih = iq[jz-1]>>23; +	else if(z>=0.5) ih=2; + +	if(ih>0) {	/* q > 0.5 */ +	    n += 1; carry = 0; +	    for(i=0;i<jz ;i++) {	/* compute 1-q */ +		j = iq[i]; +		if(carry==0) { +		    if(j!=0) { +			carry = 1; iq[i] = 0x1000000- j; +		    } +		} else  iq[i] = 0xffffff - j; +	    } +	    if(q0>0) {		/* rare case: chance is 1 in 12 */ +	        switch(q0) { +	        case 1: +	    	   iq[jz-1] &= 0x7fffff; break; +	    	case 2: +	    	   iq[jz-1] &= 0x3fffff; break; +	        } +	    } +	    if(ih==2) { +		z = one - z; +		if(carry!=0) z -= scalbn(one,q0); +	    } +	} + +    /* check if recomputation is needed */ +	if(z==zero) { +	    j = 0; +	    for (i=jz-1;i>=jk;i--) j |= iq[i]; +	    if(j==0) { /* need recomputation */ +		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */ + +		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */ +		    f[jx+i] = (double) ipio2[jv+i]; +		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; +		    q[i] = fw; +		} +		jz += k; +		goto recompute; +	    } +	} + +    /* chop off zero terms */ +	if(z==0.0) { +	    jz -= 1; q0 -= 24; +	    while(iq[jz]==0) { jz--; q0-=24;} +	} else { /* break z into 24-bit if necessary */ +	    z = scalbn(z,-q0); +	    if(z>=two24) {  +		fw = (double)((int32_t)(twon24*z)); +		iq[jz] = (int32_t)(z-two24*fw); +		jz += 1; q0 += 24; +		iq[jz] = (int32_t) fw; +	    } else iq[jz] = (int32_t) z ; +	} + +    /* convert integer "bit" chunk to floating-point value */ +	fw = scalbn(one,q0); +	for(i=jz;i>=0;i--) { +	    q[i] = fw*(double)iq[i]; fw*=twon24; +	} + +    /* compute PIo2[0,...,jp]*q[jz,...,0] */ +	for(i=jz;i>=0;i--) { +	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; +	    fq[jz-i] = fw; +	} + +    /* compress fq[] into y[] */ +	switch(prec) { +	    case 0: +		fw = 0.0; +		for (i=jz;i>=0;i--) fw += fq[i]; +		y[0] = (ih==0)? fw: -fw;  +		break; +	    case 1: +	    case 2: +		fw = 0.0; +		for (i=jz;i>=0;i--) fw += fq[i];  +		y[0] = (ih==0)? fw: -fw;  +		fw = fq[0]-fw; +		for (i=1;i<=jz;i++) fw += fq[i]; +		y[1] = (ih==0)? fw: -fw;  +		break; +	    case 3:	/* painful */ +		for (i=jz;i>0;i--) { +		    fw      = fq[i-1]+fq[i];  +		    fq[i]  += fq[i-1]-fw; +		    fq[i-1] = fw; +		} +		for (i=jz;i>1;i--) { +		    fw      = fq[i-1]+fq[i];  +		    fq[i]  += fq[i-1]-fw; +		    fq[i-1] = fw; +		} +		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];  +		if(ih==0) { +		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw; +		} else { +		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; +		} +	} +	return n&7; +}  | 
