/* Thread management routine * Copyright (C) 1998, 2000 Kunihiro Ishiguro * * This file is part of GNU Zebra. * * GNU Zebra is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * GNU Zebra is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Zebra; see the file COPYING. If not, write to the Free * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA * 02111-1307, USA. */ /* #define DEBUG */ #include #include "thread.h" #include "memory.h" #include "log.h" #include "hash.h" #include "command.h" #include "sigevent.h" static struct hash *cpu_record = NULL; /* Struct timeval's tv_usec one second value. */ #define TIMER_SECOND_MICRO 1000000L struct timeval timeval_adjust (struct timeval a) { while (a.tv_usec >= TIMER_SECOND_MICRO) { a.tv_usec -= TIMER_SECOND_MICRO; a.tv_sec++; } while (a.tv_usec < 0) { a.tv_usec += TIMER_SECOND_MICRO; a.tv_sec--; } if (a.tv_sec < 0) { a.tv_sec = 0; a.tv_usec = 10; } if (a.tv_sec > TIMER_SECOND_MICRO) a.tv_sec = TIMER_SECOND_MICRO; return a; } static struct timeval timeval_subtract (struct timeval a, struct timeval b) { struct timeval ret; ret.tv_usec = a.tv_usec - b.tv_usec; ret.tv_sec = a.tv_sec - b.tv_sec; return timeval_adjust (ret); } static int timeval_cmp (struct timeval a, struct timeval b) { return (a.tv_sec == b.tv_sec ? a.tv_usec - b.tv_usec : a.tv_sec - b.tv_sec); } static unsigned long timeval_elapsed (struct timeval a, struct timeval b) { return (((a.tv_sec - b.tv_sec) * TIMER_SECOND_MICRO) + (a.tv_usec - b.tv_usec)); } static unsigned int cpu_record_hash_key (struct cpu_thread_history *a) { return (unsigned int) a->func; } static int cpu_record_hash_cmp (struct cpu_thread_history *a, struct cpu_thread_history *b) { return a->func == b->func; } static void* cpu_record_hash_alloc (struct cpu_thread_history *a) { struct cpu_thread_history *new; new = XCALLOC (MTYPE_THREAD_STATS, sizeof (struct cpu_thread_history)); new->func = a->func; new->funcname = XSTRDUP(MTYPE_THREAD_FUNCNAME, a->funcname); return new; } static inline void vty_out_cpu_thread_history(struct vty* vty, struct cpu_thread_history *a) { vty_out(vty, " %7ld.%03ld %9d %8ld %10ld %c%c%c%c%c %s%s", a->total/1000, a->total%1000, a->total_calls, a->total/a->total_calls, a->max, a->types & (1 << THREAD_READ) ? 'R':' ', a->types & (1 << THREAD_WRITE) ? 'W':' ', a->types & (1 << THREAD_TIMER) ? 'T':' ', a->types & (1 << THREAD_EVENT) ? 'E':' ', a->types & (1 << THREAD_EXECUTE) ? 'X':' ', a->funcname, VTY_NEWLINE); } static void cpu_record_hash_print(struct hash_backet *bucket, void *args[]) { struct cpu_thread_history *totals = args[0]; struct vty *vty = args[1]; unsigned char *filter = args[2]; struct cpu_thread_history *a = bucket->data; a = bucket->data; if ( !(a->types & *filter) ) return; vty_out_cpu_thread_history(vty,a); totals->total += a->total; totals->total_calls += a->total_calls; if (totals->max < a->max) totals->max = a->max; } static void cpu_record_print(struct vty *vty, unsigned char filter) { struct cpu_thread_history tmp; void *args[3] = {&tmp, vty, &filter}; memset(&tmp, 0, sizeof tmp); tmp.funcname = "TOTAL"; tmp.types = filter; vty_out(vty, " Runtime(ms) Invoked Avg uSecs Max uSecs Type Thread%s", VTY_NEWLINE); hash_iterate(cpu_record, (void(*)(struct hash_backet*,void*))cpu_record_hash_print, args); if (tmp.total_calls > 0) vty_out_cpu_thread_history(vty, &tmp); } DEFUN(show_thread_cpu, show_thread_cpu_cmd, "show thread cpu [FILTER]", SHOW_STR "Thread information\n" "Thread CPU usage\n" "Display filter (rwtex)\n") { int i = 0; unsigned char filter = 0xff; if (argc > 0) { filter = 0; while (argv[0][i] != '\0') { switch ( argv[0][i] ) { case 'r': case 'R': filter |= (1 << THREAD_READ); break; case 'w': case 'W': filter |= (1 << THREAD_WRITE); break; case 't': case 'T': filter |= (1 << THREAD_TIMER); break; case 'e': case 'E': filter |= (1 << THREAD_EVENT); break; case 'x': case 'X': filter |= (1 << THREAD_EXECUTE); break; default: break; } ++i; } if (filter == 0) { vty_out(vty, "Invalid filter \"%s\" specified, must contain at least one of 'RWTEX'%s", argv[0], VTY_NEWLINE); return CMD_WARNING; } } cpu_record_print(vty, filter); return CMD_SUCCESS; } /* List allocation and head/tail print out. */ static void thread_list_debug (struct thread_list *list) { printf ("count [%d] head [%p] tail [%p]\n", list->count, list->head, list->tail); } /* Debug print for thread_master. */ void thread_master_debug (struct thread_master *m) { printf ("-----------\n"); printf ("readlist : "); thread_list_debug (&m->read); printf ("writelist : "); thread_list_debug (&m->write); printf ("timerlist : "); thread_list_debug (&m->timer); printf ("eventlist : "); thread_list_debug (&m->event); printf ("unuselist : "); thread_list_debug (&m->unuse); printf ("total alloc: [%ld]\n", m->alloc); printf ("-----------\n"); } /* Allocate new thread master. */ struct thread_master * thread_master_create () { if (cpu_record == NULL) { cpu_record = hash_create_size( 1011, cpu_record_hash_key, cpu_record_hash_cmp); } return (struct thread_master *) XCALLOC (MTYPE_THREAD_MASTER, sizeof (struct thread_master)); } /* Add a new thread to the list. */ static void thread_list_add (struct thread_list *list, struct thread *thread) { thread->next = NULL; thread->prev = list->tail; if (list->tail) list->tail->next = thread; else list->head = thread; list->tail = thread; list->count++; } /* Add a new thread just before the point. */ static void thread_list_add_before (struct thread_list *list, struct thread *point, struct thread *thread) { thread->next = point; thread->prev = point->prev; if (point->prev) point->prev->next = thread; else list->head = thread; point->prev = thread; list->count++; } /* Delete a thread from the list. */ static struct thread * thread_list_delete (struct thread_list *list, struct thread *thread) { if (thread->next) thread->next->prev = thread->prev; else list->tail = thread->prev; if (thread->prev) thread->prev->next = thread->next; else list->head = thread->next; thread->next = thread->prev = NULL; list->count--; return thread; } /* Move thread to unuse list. */ static void thread_add_unuse (struct thread_master *m, struct thread *thread) { assert (m != NULL); assert (thread->next == NULL); assert (thread->prev == NULL); assert (thread->type == THREAD_UNUSED); thread_list_add (&m->unuse, thread); /* XXX: Should we deallocate funcname here? */ } /* Free all unused thread. */ static void thread_list_free (struct thread_master *m, struct thread_list *list) { struct thread *t; struct thread *next; for (t = list->head; t; t = next) { next = t->next; XFREE (MTYPE_THREAD_FUNCNAME, t->funcname); XFREE (MTYPE_THREAD, t); list->count--; m->alloc--; } } /* Stop thread scheduler. */ void thread_master_free (struct thread_master *m) { thread_list_free (m, &m->read); thread_list_free (m, &m->write); thread_list_free (m, &m->timer); thread_list_free (m, &m->event); thread_list_free (m, &m->ready); thread_list_free (m, &m->unuse); XFREE (MTYPE_THREAD_MASTER, m); } /* Delete top of the list and return it. */ static struct thread * thread_trim_head (struct thread_list *list) { if (list->head) return thread_list_delete (list, list->head); return NULL; } /* Thread list is empty or not. */ int thread_empty (struct thread_list *list) { return list->head ? 0 : 1; } /* Return remain time in second. */ unsigned long thread_timer_remain_second (struct thread *thread) { struct timeval timer_now; gettimeofday (&timer_now, NULL); if (thread->u.sands.tv_sec - timer_now.tv_sec > 0) return thread->u.sands.tv_sec - timer_now.tv_sec; else return 0; } /* Trim blankspace and "()"s */ static char * strip_funcname (const char *funcname) { char buff[100]; char tmp, *ret, *e, *b = buff; strncpy(buff, funcname, sizeof(buff)); buff[ sizeof(buff) -1] = '\0'; e = buff +strlen(buff) -1; /* Wont work for funcname == "Word (explanation)" */ while (*b == ' ' || *b == '(') ++b; while (*e == ' ' || *e == ')') --e; e++; tmp = *e; *e = '\0'; ret = XSTRDUP (MTYPE_THREAD_FUNCNAME, b); *e = tmp; return ret; } /* Get new thread. */ static struct thread * thread_get (struct thread_master *m, u_char type, int (*func) (struct thread *), void *arg, const char* funcname) { struct thread *thread; if (m->unuse.head) { thread = thread_trim_head (&m->unuse); if (thread->funcname) XFREE(MTYPE_THREAD_FUNCNAME, thread->funcname); } else { thread = XCALLOC (MTYPE_THREAD, sizeof (struct thread)); m->alloc++; } thread->type = type; thread->add_type = type; thread->master = m; thread->func = func; thread->arg = arg; thread->funcname = strip_funcname(funcname); return thread; } /* Add new read thread. */ struct thread * funcname_thread_add_read (struct thread_master *m, int (*func) (struct thread *), void *arg, int fd, const char* funcname) { struct thread *thread; assert (m != NULL); if (FD_ISSET (fd, &m->readfd)) { zlog (NULL, LOG_WARNING, "There is already read fd [%d]", fd); return NULL; } thread = thread_get (m, THREAD_READ, func, arg, funcname); FD_SET (fd, &m->readfd); thread->u.fd = fd; thread_list_add (&m->read, thread); return thread; } /* Add new write thread. */ struct thread * funcname_thread_add_write (struct thread_master *m, int (*func) (struct thread *), void *arg, int fd, const char* funcname) { struct thread *thread; assert (m != NULL); if (FD_ISSET (fd, &m->writefd)) { zlog (NULL, LOG_WARNING, "There is already write fd [%d]", fd); return NULL; } thread = thread_get (m, THREAD_WRITE, func, arg, funcname); FD_SET (fd, &m->writefd); thread->u.fd = fd; thread_list_add (&m->write, thread); return thread; } static struct thread * funcname_thread_add_timer_timeval (struct thread_master *m, int (*func) (struct thread *), void *arg, struct timeval *time_relative, const char* funcname) { struct thread *thread; struct timeval timer_now; #ifndef TIMER_NO_SORT struct thread *tt; #endif /* TIMER_NO_SORT */ assert (m != NULL); thread = thread_get (m, THREAD_TIMER, func, arg, funcname); /* Do we need jitter here? */ gettimeofday (&timer_now, NULL); timer_now.tv_sec += time_relative->tv_sec; timer_now.tv_usec += time_relative->tv_usec; timeval_adjust (timer_now); thread->u.sands = timer_now; /* Sort by timeval. */ #ifdef TIMER_NO_SORT thread_list_add (&m->timer, thread); #else for (tt = m->timer.head; tt; tt = tt->next) if (timeval_cmp (thread->u.sands, tt->u.sands) <= 0) break; if (tt) thread_list_add_before (&m->timer, tt, thread); else thread_list_add (&m->timer, thread); #endif /* TIMER_NO_SORT */ return thread; } /* Add timer event thread. */ struct thread * funcname_thread_add_timer (struct thread_master *m, int (*func) (struct thread *), void *arg, long timer, const char* funcname) { struct timeval trel; assert (m != NULL); trel.tv_sec = timer; trel.tv_usec = 0; return funcname_thread_add_timer_timeval (m, func, arg, &trel, funcname); } /* Add timer event thread with "millisecond" resolution */ struct thread * funcname_thread_add_timer_msec (struct thread_master *m, int (*func) (struct thread *), void *arg, long timer, const char* funcname) { struct timeval trel; assert (m != NULL); trel.tv_sec = timer / 1000; trel.tv_usec = 1000*(timer % 1000); return funcname_thread_add_timer_timeval (m, func, arg, &trel, funcname); } /* Add simple event thread. */ struct thread * funcname_thread_add_event (struct thread_master *m, int (*func) (struct thread *), void *arg, int val, const char* funcname) { struct thread *thread; assert (m != NULL); thread = thread_get (m, THREAD_EVENT, func, arg, funcname); thread->u.val = val; thread_list_add (&m->event, thread); return thread; } /* Cancel thread from scheduler. */ void thread_cancel (struct thread *thread) { switch (thread->type) { case THREAD_READ: assert (FD_ISSET (thread->u.fd, &thread->master->readfd)); FD_CLR (thread->u.fd, &thread->master->readfd); thread_list_delete (&thread->master->read, thread); break; case THREAD_WRITE: assert (FD_ISSET (thread->u.fd, &thread->master->writefd)); FD_CLR (thread->u.fd, &thread->master->writefd); thread_list_delete (&thread->master->write, thread); break; case THREAD_TIMER: thread_list_delete (&thread->master->timer, thread); break; case THREAD_EVENT: thread_list_delete (&thread->master->event, thread); break; case THREAD_READY: thread_list_delete (&thread->master->ready, thread); break; default: break; } thread->type = THREAD_UNUSED; thread_add_unuse (thread->master, thread); } /* Delete all events which has argument value arg. */ void thread_cancel_event (struct thread_master *m, void *arg) { struct thread *thread; thread = m->event.head; while (thread) { struct thread *t; t = thread; thread = t->next; if (t->arg == arg) { thread_list_delete (&m->event, t); t->type = THREAD_UNUSED; thread_add_unuse (m, t); } } } #ifdef TIMER_NO_SORT struct timeval * thread_timer_wait (struct thread_master *m, struct timeval *timer_val) { struct timeval timer_now; struct timeval timer_min; struct timeval *timer_wait; gettimeofday (&timer_now, NULL); timer_wait = NULL; for (thread = m->timer.head; thread; thread = thread->next) { if (! timer_wait) timer_wait = &thread->u.sands; else if (timeval_cmp (thread->u.sands, *timer_wait) < 0) timer_wait = &thread->u.sands; } if (m->timer.head) { timer_min = *timer_wait; timer_min = timeval_subtract (timer_min, timer_now); if (timer_min.tv_sec < 0) { timer_min.tv_sec = 0; timer_min.tv_usec = 10; } timer_wait = &timer_min; } else timer_wait = NULL; if (timer_wait) { *timer_val = timer_wait; return timer_val; } return NULL; } #else /* ! TIMER_NO_SORT */ struct timeval * thread_timer_wait (struct thread_master *m, struct timeval *timer_val) { struct timeval timer_now; struct timeval timer_min; if (m->timer.head) { gettimeofday (&timer_now, NULL); timer_min = m->timer.head->u.sands; timer_min = timeval_subtract (timer_min, timer_now); if (timer_min.tv_sec < 0) { timer_min.tv_sec = 0; timer_min.tv_usec = 10; } *timer_val = timer_min; return timer_val; } return NULL; } #endif /* TIMER_NO_SORT */ struct thread * thread_run (struct thread_master *m, struct thread *thread, struct thread *fetch) { *fetch = *thread; thread->type = THREAD_UNUSED; thread_add_unuse (m, thread); return fetch; } int thread_process_fd (struct thread_master *m, struct thread_list *list, fd_set *fdset, fd_set *mfdset) { struct thread *thread; struct thread *next; int ready = 0; for (thread = list->head; thread; thread = next) { next = thread->next; if (FD_ISSET (THREAD_FD (thread), fdset)) { assert (FD_ISSET (THREAD_FD (thread), mfdset)); FD_CLR(THREAD_FD (thread), mfdset); thread_list_delete (list, thread); thread_list_add (&m->ready, thread); thread->type = THREAD_READY; ready++; } } return ready; } /* Fetch next ready thread. */ struct thread * thread_fetch (struct thread_master *m, struct thread *fetch) { int num; int ready; struct thread *thread; fd_set readfd; fd_set writefd; fd_set exceptfd; struct timeval timer_now; struct timeval timer_val; struct timeval *timer_wait; struct timeval timer_nowait; timer_nowait.tv_sec = 0; timer_nowait.tv_usec = 0; while (1) { /* Signals are highest priority */ quagga_sigevent_process (); /* Normal event are the next highest priority. */ if ((thread = thread_trim_head (&m->event)) != NULL) return thread_run (m, thread, fetch); /* Execute timer. */ gettimeofday (&timer_now, NULL); for (thread = m->timer.head; thread; thread = thread->next) if (timeval_cmp (timer_now, thread->u.sands) >= 0) { thread_list_delete (&m->timer, thread); return thread_run (m, thread, fetch); } /* If there are any ready threads, process top of them. */ if ((thread = thread_trim_head (&m->ready)) != NULL) return thread_run (m, thread, fetch); /* Structure copy. */ readfd = m->readfd; writefd = m->writefd; exceptfd = m->exceptfd; /* Calculate select wait timer. */ timer_wait = thread_timer_wait (m, &timer_val); num = select (FD_SETSIZE, &readfd, &writefd, &exceptfd, timer_wait); if (num == 0) continue; if (num < 0) { if (errno == EINTR) { /* signal received */ quagga_sigevent_process (); continue; } zlog_warn ("select() error: %s", safe_strerror (errno)); return NULL; } /* Normal priority read thead. */ ready = thread_process_fd (m, &m->read, &readfd, &m->readfd); /* Write thead. */ ready = thread_process_fd (m, &m->write, &writefd, &m->writefd); if ((thread = thread_trim_head (&m->ready)) != NULL) return thread_run (m, thread, fetch); } } static unsigned long thread_consumed_time (RUSAGE_T *now, RUSAGE_T *start) { unsigned long thread_time; #ifdef HAVE_RUSAGE /* This is 'user + sys' time. */ thread_time = timeval_elapsed (now->ru_utime, start->ru_utime); thread_time += timeval_elapsed (now->ru_stime, start->ru_stime); #else /* When rusage is not available, simple elapsed time is used. */ thread_time = timeval_elapsed (*now, *start); #endif /* HAVE_RUSAGE */ return thread_time; } /* We should aim to yield after THREAD_YIELD_TIME_SLOT milliseconds. */ int thread_should_yield (struct thread *thread) { RUSAGE_T ru; GETRUSAGE (&ru); if (thread_consumed_time (&ru, &thread->ru) > THREAD_YIELD_TIME_SLOT) return 1; else return 0; } /* We check thread consumed time. If the system has getrusage, we'll use that to get indepth stats on the performance of the thread. If not - we'll use gettimeofday for some guestimation. */ void thread_call (struct thread *thread) { unsigned long thread_time; RUSAGE_T ru; struct cpu_thread_history tmp, *cpu; tmp.func = thread->func; tmp.funcname = thread->funcname; cpu = hash_get(cpu_record, &tmp, cpu_record_hash_alloc); GETRUSAGE (&thread->ru); (*thread->func) (thread); GETRUSAGE (&ru); thread_time = thread_consumed_time (&ru, &thread->ru); cpu->total += thread_time; if (cpu->max < thread_time) cpu->max = thread_time; ++cpu->total_calls; cpu->types |= (1 << thread->add_type); #ifdef THREAD_CONSUMED_TIME_CHECK if (thread_time > 200000L) { /* * We have a CPU Hog on our hands. * Whinge about it now, so we're aware this is yet another task * to fix. */ zlog_err ("CPU HOG task %s (%lx) ran for %ldms", thread->funcname, (unsigned long) thread->func, thread_time / 1000L); } #endif /* THREAD_CONSUMED_TIME_CHECK */ } /* Execute thread */ struct thread * funcname_thread_execute (struct thread_master *m, int (*func)(struct thread *), void *arg, int val, const char* funcname) { struct thread dummy; memset (&dummy, 0, sizeof (struct thread)); dummy.type = THREAD_EVENT; dummy.add_type = THREAD_EXECUTE; dummy.master = NULL; dummy.func = func; dummy.arg = arg; dummy.u.val = val; dummy.funcname = strip_funcname (funcname); thread_call (&dummy); XFREE (MTYPE_THREAD_FUNCNAME, dummy.funcname); return NULL; }