| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
Using install() for the inbound SA and register_outbound() for the
outbound SA followed by install_policies(), will delay the installation of
the outbound SA as well as the installation of the outbound policies
in the kernel until install_outbound() is called later.
|
| |
|
|
|
|
| |
This way we only have to pass the traffic selectors once.
|
| |
|
|
|
|
|
|
| |
This is needed to handle DELETEs properly, which was previously done via
CHILD_REKEYING, which we don't use anymore since 5c6a62ceb6 as it prevents
reauthentication.
|
|
|
|
|
|
|
|
|
|
|
| |
As we now use the same reqid for multiple CHILD_SAs with the same selectors,
having marks based on the reqid makes not that much sense anymore. Instead we
use unique marks that use a custom identifier. This identifier is reused during
rekeying, keeping the marks constant for any rule relying on it (for example
installed by updown).
This also simplifies handling of reqid allocation, as we do not have to query
the marks that is not yet assigned for an unknown reqid.
|
|
|
|
|
| |
As the reqid is not that unique even among multiple IKE_SAs anymore, we need
an identifier to uniquely identify a specific CHILD_SA instance.
|
| |
|
| |
|
|
|
|
| |
Partially based on an old patch by Adrian-Ken Rueegsegger.
|
|
|
|
|
| |
Not directly returning a linked list allows us to change the internals of
the CHILD_SA transparently.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This new flag gives the kernel-interface a hint how it should priorize the
use of newly installed SAs during rekeying.
Consider the following rekey procedure in IKEv2:
Initiator --- Responder
I1 -------CREATE-------> R1
I2 <------CREATE--------
-------DELETE-------> R2
I3 <------DELETE--------
SAs are always handled as pairs, the following happens at the SA level:
* Initiator starts the exchange at I1
* Responder installs new SA pair at R1
* Initiator installs new SA pair at I2
* Responder removes old SA pair at R2
* Initiator removes old SA pair at I3
This makes sure SAs get installed/removed overlapping during rekeying. However,
to avoid any packet loss, it is crucial that the new outbound SA gets
activated at the correct position:
* as exchange initiator, in I2
* as exchange responder, in R2
This should guarantee that we don't use the new outbound SA before the peer
could install its corresponding inbound SA.
The new parameter allows the kernel backend to install the new SA with
appropriate priorities, i.e. it should:
* as exchange inititator, have the new outbound SA installed with higher
priority than the old SA
* as exchange responder, have the new outbound SA installed with lower
priority than the old SA
While we could split up the SA installation at the responder, this approach
has another advantage: it allows the kernel backend to switch SAs based on
other criteria, for example when receiving traffic on the new inbound SA.
|
|
|
|
| |
packets
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|