| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
| |
The current "inbound" flag is used for two purposes: To define the actual
direction of the SA, but also to determine the operation used for SA
installation. If an SPI has been allocated, an update operation is required
instead of an add.
While the inbound flag normally defines the kind of operation required, this
is not necessarily true in all cases. On the HA passive node, we install inbound
SAs without prior SPI allocation.
|
|
|
|
|
|
|
|
|
| |
While the the meaning of the "inbound" flag on the kernel_interface->add_sa()
call is not very clear, we still need that update logic to allow installation of
inbound SAs without SPI allocation. This is used in the HA plugin as a passive
node.
This reverts commit 698ed656.
|
|
|
|
| |
functions
|
|
|
|
|
|
| |
Previously, we failed without recovery if a private key did not support
a selected signature scheme (based on key strength and the other peer's
supported hash algorithms).
|
|
|
|
|
|
|
| |
The payload we sent before is not compliant with RFC 2407 and thus some
peers might abort negotiation (e.g. with an INVALID-PROTOCOL-ID error).
Fixes #819.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
If this is disabled the schemes configured in `rightauth` are only
checked against signature schemes used in the certificate chain and
signature schemes used during IKEv2 are ignored.
Disabling this could be helpful if existing connections with peers that
don't support RFC 7427 use signature schemes in `rightauth` to verify
certificate chains.
|
|
|
|
|
| |
This is really just a fallback to "classic" IKEv2 authentication if the other
peer supports no stronger hash algorithms.
|
|
|
|
|
| |
By enumerating hashes we'd use SHA-1 by default. This way stronger
signature schemes are preferred.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This enables late connection switching based on the signature scheme used
for IKEv2 and allows to enforce stronger signature schemes.
This may break existing connections with peers that don't support RFC 7427
if signature schemes are currently used in `rightauth` for certificate chain
validation and if the configured schemes are stronger than the default used
for IKE (e.g. SHA-1 for RSA).
|
|
|
|
| |
This is mostly for testing.
|
|
|
|
|
|
| |
We use the new signature authentication instead for this. This is not
backward compatible but we only released one version with BLISS support,
and the key format will change anyway with the next release.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
The previous code allowed an attacker to slip in an IKE_SA_INIT with
both SPIs and MID 1 set when an IKE_AUTH would be expected instead.
References #816.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It is mandated by the RFCs and it is expected by the task managers.
Initial messages with invalid MID will be treated like regular messages,
so no IKE_SA will be created for them. Instead, if the responder SPI is 0
no SA will be found and the message is rejected with ALERT_INVALID_IKE_SPI.
If an SPI is set and we do find an SA, then we either ignore the message
because the MID is unexpected, or because we don't allow initial messages
on established connections.
There is one exception, though, if an attacker can slip in an IKE_SA_INIT
with both SPIs set before the client's IKE_AUTH is handled by the server,
it does get processed (see next commit).
References #816.
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts 8f727d800751 ("Clean up IKE_SA state if IKE_SA_INIT request
does not have message ID 0") because it allowed to close any IKE_SA by
sending an IKE_SA_INIT with an unexpected MID and both SPIs set to those
of that SA.
The next commit will prevent SAs from getting created for IKE_SA_INIT messages
with invalid MID.
Fixes #816.
|
|
|
|
|
|
|
|
|
| |
While the comment is rather clear that we should not adopt live CHILD_SAs
during reauthentication in IKEv2, the code does nonetheless. Add an additional
version check to fix reauthentication if the reauth responder has a replace
uniqueids policy.
Fixes #871.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Under some conditions it can happen that the CREATE_CHILD_SA exchange for
rekeying the IKE_SA initiated by the peer is successful, but the delete message
does not follow. For example if processing takes just too long locally, the
peer might consider us dead, but we won't notice that.
As this leaves the old IKE_SA in IKE_REKEYING state, we currently avoid actively
initiating any tasks, such as rekeying or scheduled DPD. This leaves the IKE_SA
in a dead and unusable state. To avoid that situation, we schedule a timeout
to wait for the DELETE message to follow the CREATE_CHILD_SA, before we
actively start to delete the IKE_SA.
Alternatively we could start a liveness check on the SA after a timeout to see
if the peer still has that state and we can expect the delete to follow. But
it is unclear if all peers can handle such messages in this very special state,
so we currently don't go for that approach.
While we could calculate the timeout based on the local retransmission timeout,
the peer might use a different scheme, so a fixed timeout works as well.
Fixes #742.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
To quickly check out IKE_SAs and find associated CHILD_SAs, the
child_sa_manager stores relations between CHILD_SAs and IKE_SAs. It provides
CHILD_SA specific IKE_SA checkout functions wrapping the ike_sa_manager.
|
|
|
|
|
|
|
|
|
|
|
| |
As we now use the same reqid for multiple CHILD_SAs with the same selectors,
having marks based on the reqid makes not that much sense anymore. Instead we
use unique marks that use a custom identifier. This identifier is reused during
rekeying, keeping the marks constant for any rule relying on it (for example
installed by updown).
This also simplifies handling of reqid allocation, as we do not have to query
the marks that is not yet assigned for an unknown reqid.
|
|
|
|
|
| |
As the reqid is not that unique even among multiple IKE_SAs anymore, we need
an identifier to uniquely identify a specific CHILD_SA instance.
|
| |
|
|
|
|
| |
Having traffic selectors sorted properly makes comparing them much simpler.
|
|
|
|
|
|
| |
The kernel backend uses an inbound parameter these days, where it makes
no sense to pass the update flag. The kernel backend decides itself how
it handles SA installation based on the inbound flag.
|
|
|
|
|
|
| |
While we can handle the first selector only in BEET mode in kernel-netlink,
passing the full list gives the backend more flexibility how to handle this
information.
|
|
|
|
|
|
|
|
|
|
| |
The reqid is not strictly required, as we set the reqid with the update
call when installing the negotiated SA.
If we don't need a reqid at this stage, we can later allocate the reqid in
the kernel backend once the SA parameters have been fully negotaited. This
allows us to assign the same reqid for the same selectors to avoid conflicts
on backends this is necessary.
|
| |
|
|
|
|
|
|
| |
While they usually are not included in a normal strongSwan build, the XPC
header indirectly defines these Mach types. To build charon-xpc, which uses
both XPC and strongSwan includes, we have to redefine these types.
|
| |
|