/** * @file ike_sa_manager.c * * @brief Central point for managing IKE-SAs (creation, locking, deleting...) * */ /* * Copyright (C) 2005 Jan Hutter, Martin Willi * Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include #include "allocator.h" #include "ike_sa_manager.h" #include "linked_list.h" #include "ike_sa_id.h" /** * @brief An entry in the linked list, contains IKE_SA, locking and lookup data. */ typedef struct ike_sa_entry_s ike_sa_entry_t; struct ike_sa_entry_s { /** * destructor, recursivly destroys ike_sa */ status_t (*destroy) (ike_sa_entry_t *this); /** * Number of threads waiting for this ike_sa */ int waiting_threads; /** * is this SA flagged for deleting ? */ pthread_cond_t condvar; /** * is this ike_sa currently checked out? */ bool checked_out; /** * identifiaction of ike_sa (SPIs) */ ike_sa_id_t *ike_sa_id; /** * the contained ike_sa */ ike_sa_t *ike_sa; }; static status_t ike_sa_entry_destroy(ike_sa_entry_t *this) { this->ike_sa->destroy(this->ike_sa); this->ike_sa_id->destroy(this->ike_sa_id); allocator_free(this); return SUCCESS; } /** * @brief creates a new entry for the ike_sa list * * This constructor additionaly creates a new and empty SA * * @param ike_sa_id the associated ike_sa_id_t, NOT cloned * @return created entry, with ike_sa and ike_sa_id */ ike_sa_entry_t *ike_sa_entry_create(ike_sa_id_t *ike_sa_id) { ike_sa_entry_t *this = allocator_alloc_thing(ike_sa_entry_t); this->destroy = ike_sa_entry_destroy; this->waiting_threads = 0; pthread_cond_init(&(this->condvar), NULL); /* we set checkout flag when we really give it out */ this->checked_out = FALSE; this->ike_sa_id = ike_sa_id; this->ike_sa = ike_sa_create(ike_sa_id); return this; } /** * Additional private members to ike_sa_manager_t */ typedef struct private_ike_sa_manager_s private_ike_sa_manager_t; struct private_ike_sa_manager_s { /** * Public members */ ike_sa_manager_t public; /** * @brief get next spi * * we give out SPIs incremental * * @param this the ike_sa_manager * @param spi[out] spi will be written here * @return SUCCESS or, * OUT_OF_RES when we already served 2^64 SPIs ;-) */ status_t (*get_next_spi) (private_ike_sa_manager_t *this, spi_t *spi); /** * @brief find the ike_sa_entry in the list by SPIs * * This function simply iterates over the linked list. A hash-table * would be more efficient when storing a lot of IKE_SAs... * * @param this the ike_sa_manager containing the list * @param ike_sa_id id of the ike_sa, containing SPIs * @param entry[out] pointer to set to the found entry * @return SUCCESS when found, * NOT_FOUND when no such ike_sa_id in list */ status_t (*get_entry_by_id) (private_ike_sa_manager_t *this, ike_sa_id_t *ike_sa_id, ike_sa_entry_t **entry); /** * @brief find the ike_sa_entry in the list by pointer to SA. * * This function simply iterates over the linked list. A hash-table * would be more efficient when storing a lot of IKE_SAs... * * @param this the ike_sa_manager containing the list * @param ike_sad pointer to the ike_sa * @param entry[out] pointer to set to the found entry * @return SUCCESS when found, * NOT_FOUND when no such ike_sa_id in list */ status_t (*get_entry_by_sa) (private_ike_sa_manager_t *this, ike_sa_t *ike_sa, ike_sa_entry_t **entry); /** * @brief */ status_t (*delete_entry) (private_ike_sa_manager_t *this, ike_sa_entry_t *entry); /** * lock for exclusivly accessing the manager */ pthread_mutex_t mutex; /** * Linked list with entries for the ike_sa */ linked_list_t *list; /** * Next SPI, needed for incremental creation of SPIs */ spi_t next_spi; }; /** * @see private_ike_sa_manager_t.get_ike_sa_entry */ static status_t get_ike_sa_entry_by_id(private_ike_sa_manager_t *this, ike_sa_id_t *ike_sa_id, ike_sa_entry_t **entry) { linked_list_t *list = this->list; linked_list_iterator_t *iterator; list->create_iterator(list, &iterator, TRUE); while (iterator->has_next(iterator)) { ike_sa_entry_t *current; bool are_equal = FALSE; iterator->current(iterator, (void**)¤t); current->ike_sa_id->equals(current->ike_sa_id, ike_sa_id, &are_equal); if (are_equal) { *entry = current; iterator->destroy(iterator); return SUCCESS; } } iterator->destroy(iterator); return NOT_FOUND; } /** * @see private_ike_sa_manager_t.get_ike_sa_entry_by_sa */ static status_t get_ike_sa_entry_by_sa(private_ike_sa_manager_t *this, ike_sa_t *ike_sa, ike_sa_entry_t **entry) { linked_list_t *list = this->list; linked_list_iterator_t *iterator; list->create_iterator(list, &iterator, TRUE); while (iterator->has_next(iterator)) { ike_sa_entry_t *current; iterator->current(iterator, (void**)¤t); if (current->ike_sa == ike_sa) { *entry = current; iterator->destroy(iterator); return SUCCESS; } } iterator->destroy(iterator); return NOT_FOUND; } /** * @see private_ike_sa_manager_t.get_next_spi */ static status_t get_next_spi(private_ike_sa_manager_t *this, spi_t *spi) { this->next_spi.low ++; if (this->next_spi.low == 0) { /* overflow of lower int in spi */ this->next_spi.high ++; if (this->next_spi.high == 0) { /* our software ran so incredible stable, we have no more * SPIs to give away :-/. */ return OUT_OF_RES; } } *spi = this->next_spi; return SUCCESS; } /** * @see ike_sa_manager_s.checkout_ike_sa */ static status_t checkout_ike_sa(private_ike_sa_manager_t *this, ike_sa_id_t *ike_sa_id, ike_sa_t **ike_sa) { bool responder_spi_set; bool initiator_spi_set; status_t retval; pthread_mutex_lock(&(this->mutex)); responder_spi_set = ike_sa_id->responder_spi_is_set(ike_sa_id); initiator_spi_set = ike_sa_id->initiator_spi_is_set(ike_sa_id); if (initiator_spi_set && responder_spi_set) { /* we SHOULD have an IKE_SA for these SPIs in the list, * if not, we cant handle the request... */ ike_sa_entry_t *entry; /* look for the entry */ if (this->get_entry_by_id(this, ike_sa_id, &entry) == SUCCESS) { /* is this IKE_SA already checked out ?? */ while (entry->checked_out) { /* so wait until we can get it for us. * we register us as waiting. */ entry->waiting_threads++; pthread_cond_wait(&(entry->condvar), &(this->mutex)); entry->waiting_threads--; } /* ok, this IKE_SA is finally ours */ entry->checked_out = TRUE; *ike_sa = entry->ike_sa; /* DON'T use return, we must unlock the mutex! */ retval = SUCCESS; } else { /* looks like there is no such IKE_SA, better luck next time... */ /* DON'T use return, we must unlock the mutex! */ retval = NOT_FOUND; } } else if (initiator_spi_set && !responder_spi_set) { /* an IKE_SA_INIT from an another endpoint, * he is the initiator. * For simplicity, we do NOT check for retransmitted * IKE_SA_INIT-Requests here, so EVERY single IKE_SA_INIT- * Request (even a retransmitted one) will result in a * IKE_SA. This could be improved... */ spi_t responder_spi; ike_sa_id_t *new_ike_sa_id; ike_sa_entry_t *new_ike_sa_entry; /* set SPIs, we are the responder */ ike_sa_id->clone(ike_sa_id, &new_ike_sa_id); this->get_next_spi(this, &responder_spi); new_ike_sa_id->set_responder_spi(new_ike_sa_id, responder_spi); /* we also set arguments spi, so its still valid */ ike_sa_id->set_responder_spi(ike_sa_id, responder_spi); /* create entry */ new_ike_sa_entry = ike_sa_entry_create(new_ike_sa_id); this->list->insert_last(this->list, new_ike_sa_entry); /* check ike_sa out */ new_ike_sa_entry->checked_out = TRUE; *ike_sa = new_ike_sa_entry->ike_sa; /* DON'T use return, we must unlock the mutex! */ retval = SUCCESS; } else if (!initiator_spi_set && !responder_spi_set) { /* creation of an IKE_SA from local site, * we are the initiator! */ spi_t initiator_spi, responder_spi; ike_sa_id_t *new_ike_sa_id; ike_sa_entry_t *new_ike_sa_entry; /* set SPIs */ memset(&responder_spi, 0, sizeof(spi_t)); this->get_next_spi(this, &initiator_spi); /* we also set arguments SPI, so its still valid */ ike_sa_id->set_initiator_spi(ike_sa_id, initiator_spi); /* create entry */ new_ike_sa_id = ike_sa_id_create(initiator_spi, responder_spi, INITIATOR); new_ike_sa_entry = ike_sa_entry_create(new_ike_sa_id); this->list->insert_last(this->list, new_ike_sa_entry); /* check ike_sa out */ new_ike_sa_entry->checked_out = TRUE; *ike_sa = new_ike_sa_entry->ike_sa; /* DON'T use return, we must unlock the mutex! */ retval = SUCCESS; } else { /* responder set, initiator not: here is something seriously wrong! */ /* DON'T use return, we must unlock the mutex! */ retval = INVALID_ARG; } pthread_mutex_unlock(&(this->mutex)); /* OK, unlocked... */ return retval; } static status_t checkin_ike_sa(private_ike_sa_manager_t *this, ike_sa_t *ike_sa) { /* to check the SA back in, we look for the pointer of the ike_sa * in all entries. * We can't search by SPI's since the MAY have changed (e.g. on reception * of a IKE_SA_INIT response). Updating of the SPI MAY be necessary... */ status_t retval; ike_sa_entry_t *entry; pthread_mutex_lock(&(this->mutex)); /* look for the entry */ if (this->get_entry_by_sa(this, ike_sa, &entry) == SUCCESS) { /* ike_sa_id must be updated */ entry->ike_sa_id->replace_values(entry->ike_sa_id, ike_sa->get_id(ike_sa)); /* signal waiting threads */ entry->checked_out = FALSE; pthread_cond_signal(&(entry->condvar)); retval = SUCCESS; } else { /* this SA is no more, this REALLY should not happen */ retval = NOT_FOUND; } pthread_mutex_unlock(&(this->mutex)); return retval; } static status_t delete_ike_sa_by_sa(private_ike_sa_manager_t *this, ike_sa_t *ike_sa) { /* deletion is a bit complex, we must garant that no thread is waiting for * this SA. * We take this SA from the list, and start signaling while threads * are in the condvar. */ linked_list_t *list = this->list; linked_list_iterator_t *iterator; ike_sa_entry_t *entry; bool found = FALSE; status_t retval; pthread_mutex_lock(&(this->mutex)); /* remove SA from list */ list->create_iterator(list, &iterator, TRUE); while (iterator->has_next(iterator)) { iterator->current(iterator, (void**)&entry); if (entry->ike_sa == ike_sa) { list->remove(list, iterator); found = TRUE; break; } } iterator->destroy(iterator); if (found) { /* wait until all workers have done their work */ while (entry->waiting_threads) { /* wake up all */ pthread_cond_signal(&(entry->condvar)); /* and the nice thing, they will wake us again when their work is done */ pthread_cond_wait(&(entry->condvar), &(this->mutex)); } /* ok, we are alone now, no threads waiting in the entry's condvar */ entry->destroy(entry); retval = SUCCESS; } else { retval = NOT_FOUND; } pthread_mutex_unlock(&(this->mutex)); return retval; } static status_t delete_ike_sa_by_id(private_ike_sa_manager_t *this, ike_sa_id_t *ike_sa_id) { /* deletion is a bit complex, we must garant that no thread is waiting for * this SA. * We take this SA from the list, and start signaling while threads * are in the condvar. */ linked_list_t *list = this->list; linked_list_iterator_t *iterator; ike_sa_entry_t *entry; bool found = FALSE; status_t retval; pthread_mutex_lock(&(this->mutex)); /* remove SA from list */ list->create_iterator(list, &iterator, TRUE); while (iterator->has_next(iterator)) { bool are_equal = FALSE; iterator->current(iterator, (void**)&entry); entry->ike_sa_id->equals(entry->ike_sa_id, ike_sa_id, &are_equal); if (are_equal) { list->remove(list, iterator); found = TRUE; break; } } iterator->destroy(iterator); if (found) { /* wait until all workers have done their work */ while (entry->waiting_threads) { /* wake up all */ pthread_cond_signal(&(entry->condvar)); /* and the nice thing, they will wake us again when their work is done */ pthread_cond_wait(&(entry->condvar), &(this->mutex)); } /* ok, we are alone now, no threads waiting in the entry's condvar */ entry->destroy(entry); retval = SUCCESS; } else { retval = NOT_FOUND; } pthread_mutex_unlock(&(this->mutex)); return retval; } static status_t destroy(private_ike_sa_manager_t *this) { /* destroy all list entries */ linked_list_t *list = this->list; linked_list_iterator_t *iterator; list->create_iterator(list, &iterator, TRUE); while (iterator->has_next(iterator)) { ike_sa_entry_t *entry; iterator->current(iterator, (void**)&entry); entry->destroy(entry); } iterator->destroy(iterator); list->destroy(list); allocator_free(this); return SUCCESS; } ike_sa_manager_t *ike_sa_manager_create() { private_ike_sa_manager_t *this = allocator_alloc_thing(private_ike_sa_manager_t); /* assign public functions */ this->public.destroy = (status_t(*)(ike_sa_manager_t*))destroy; this->public.checkout_ike_sa = (status_t(*)(ike_sa_manager_t*, ike_sa_id_t *sa_id, ike_sa_t **sa))checkout_ike_sa; this->public.checkin_ike_sa = (status_t(*)(ike_sa_manager_t*, ike_sa_t *sa))checkin_ike_sa; this->public.delete_ike_sa_by_id = (status_t(*)(ike_sa_manager_t*, ike_sa_id_t *sa_id))delete_ike_sa_by_id; this->public.delete_ike_sa_by_sa = (status_t(*)(ike_sa_manager_t*, ike_sa_t *ike_sa))delete_ike_sa_by_sa; /* initialize private data */ this->get_next_spi = get_next_spi; this->get_entry_by_sa = get_ike_sa_entry_by_sa; this->get_entry_by_id = get_ike_sa_entry_by_id; this->list = linked_list_create(); if (this->list == NULL) { allocator_free(this); return NULL; } pthread_mutex_init(&(this->mutex), NULL); this->next_spi.low = 1; this->next_spi.high = 0; return (ike_sa_manager_t*)this; }