/** * @file event_queue.c * * @brief Implementation of event_queue_t * */ /* * Copyright (C) 2005 Jan Hutter, Martin Willi * Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include #include "event_queue.h" #include #include #include typedef struct event_t event_t; /** * @brief Represents an event as it is stored in the event queue. * * A event consists of a event time and an assigned job object. * */ struct event_t{ /** * Time to fire the event. */ timeval_t time; /** * Every event has its assigned job. */ job_t * job; /** * @brief Destroys a event_t object. * * @param event_t calling object */ void (*destroy) (event_t *event); }; /** * implements event_t.destroy */ static void event_destroy(event_t *event) { allocator_free(event); } /** * @brief Creates a event for a specific time * * @param time absolute time to fire the event * @param job job to add to job-queue at specific time * * @returns created event_t object */ static event_t *event_create(timeval_t time, job_t *job) { event_t *this = allocator_alloc_thing(event_t); this->destroy = event_destroy; this->time = time; this->job = job; return this; } typedef struct private_event_queue_t private_event_queue_t; /** * Private Variables and Functions of event_queue_t class. * */ struct private_event_queue_t { /** * Public part. */ event_queue_t public; /** * The events are stored in a linked list of type linked_list_t. */ linked_list_t *list; /** * Access to linked_list is locked through this mutex. */ pthread_mutex_t mutex; /** * If the queue is empty or an event has not to be fired * a thread has to wait. * * This condvar is used to wake up such a thread. */ pthread_cond_t condvar; }; /** * Returns the difference of to timeval structs in microseconds * * @param end_time end time * @param start_time start time * * @warning this function is also defined in the tester class * In later improvements, this function can be added to a general * class type! * * @return difference in microseconds (end time - start time) */ static long time_difference(struct timeval *end_time, struct timeval *start_time) { long seconds, microseconds; seconds = (end_time->tv_sec - start_time->tv_sec); microseconds = (end_time->tv_usec - start_time->tv_usec); return ((seconds * 1000000) + microseconds); } /** * Implements event_queue_t.get_count */ static int get_count (private_event_queue_t *this) { int count; pthread_mutex_lock(&(this->mutex)); count = this->list->get_count(this->list); pthread_mutex_unlock(&(this->mutex)); return count; } /** * Implements event_queue_t.get */ static job_t *get(private_event_queue_t *this) { timespec_t timeout; timeval_t current_time; event_t * next_event; job_t *job; int oldstate; pthread_mutex_lock(&(this->mutex)); while (1) { while(this->list->get_count(this->list) == 0) { /* add mutex unlock handler for cancellation, enable cancellation */ pthread_cleanup_push((void(*)(void*))pthread_mutex_unlock, (void*)&(this->mutex)); pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate); pthread_cond_wait( &(this->condvar), &(this->mutex)); /* reset cancellation, remove mutex-unlock handler (without executing) */ pthread_setcancelstate(oldstate, NULL); pthread_cleanup_pop(0); } this->list->get_first(this->list,(void **) &next_event); gettimeofday(¤t_time,NULL); long difference = time_difference(¤t_time,&(next_event->time)); if (difference <= 0) { timeout.tv_sec = next_event->time.tv_sec; timeout.tv_nsec = next_event->time.tv_usec * 1000; /* add mutex unlock handler for cancellation, enable cancellation */ pthread_cleanup_push((void(*)(void*))pthread_mutex_unlock, (void*)&(this->mutex)); pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate); pthread_cond_timedwait( &(this->condvar), &(this->mutex),&timeout); /* reset cancellation, remove mutex-unlock handler (without executing) */ pthread_setcancelstate(oldstate, NULL); pthread_cleanup_pop(0); } else { /* event available */ this->list->remove_first(this->list,(void **) &next_event); job = next_event->job; next_event->destroy(next_event); break; } } pthread_cond_signal( &(this->condvar)); pthread_mutex_unlock(&(this->mutex)); return job; } /** * Implements function add_absolute of event_queue_t. * See #event_queue_s.add_absolute for description. */ static void add_absolute(private_event_queue_t *this, job_t *job, timeval_t time) { event_t *event = event_create(time,job); event_t *current_event; status_t status; pthread_mutex_lock(&(this->mutex)); /* while just used to break out */ while(1) { if (this->list->get_count(this->list) == 0) { this->list->insert_first(this->list,event); break; } /* check last entry */ this->list->get_last(this->list,(void **) ¤t_event); if (time_difference(&(event->time), &(current_event->time)) >= 0) { /* my event has to be fired after the last event in list */ this->list->insert_last(this->list,event); break; } /* check first entry */ this->list->get_first(this->list,(void **) ¤t_event); if (time_difference(&(event->time), &(current_event->time)) < 0) { /* my event has to be fired before the first event in list */ this->list->insert_first(this->list,event); break; } iterator_t * iterator; iterator = this->list->create_iterator(this->list,TRUE); iterator->has_next(iterator); /* first element has not to be checked (already done) */ while(iterator->has_next(iterator)) { status = iterator->current(iterator,(void **) ¤t_event); if (time_difference(&(event->time), &(current_event->time)) <= 0) { /* my event has to be fired before the current event in list */ iterator->insert_before(iterator,event); break; } } iterator->destroy(iterator); break; } pthread_cond_signal( &(this->condvar)); pthread_mutex_unlock(&(this->mutex)); } /** * Implements event_queue_t.add_relative. */ static void add_relative(event_queue_t *this, job_t *job, u_int32_t ms) { timeval_t current_time; timeval_t time; int micros = ms * 1000; gettimeofday(¤t_time, NULL); time.tv_usec = ((current_time.tv_usec + micros) % 1000000); time.tv_sec = current_time.tv_sec + ((current_time.tv_usec + micros)/ 1000000); this->add_absolute(this, job, time); } /** * Implements event_queue_t.destroy. */ static void event_queue_destroy(private_event_queue_t *this) { while (this->list->get_count(this->list) > 0) { event_t *event; if (this->list->remove_first(this->list,(void *) &event) != SUCCESS) { this->list->destroy(this->list); break; } event->job->destroy_all(event->job); event->destroy(event); } this->list->destroy(this->list); pthread_mutex_destroy(&(this->mutex)); pthread_cond_destroy(&(this->condvar)); allocator_free(this); } /* * Documented in header */ event_queue_t *event_queue_create() { private_event_queue_t *this = allocator_alloc_thing(private_event_queue_t); this->public.get_count = (int (*) (event_queue_t *event_queue)) get_count; this->public.get = (job_t *(*) (event_queue_t *event_queue)) get; this->public.add_absolute = (void (*) (event_queue_t *event_queue, job_t *job, timeval_t time)) add_absolute; this->public.add_relative = (void (*) (event_queue_t *event_queue, job_t *job, u_int32_t ms)) add_relative; this->public.destroy = (void (*) (event_queue_t *event_queue)) event_queue_destroy; this->list = linked_list_create(); pthread_mutex_init(&(this->mutex), NULL); pthread_cond_init(&(this->condvar), NULL); return (&this->public); }