/** * @file prime_pool.c * * @brief Implementation of prime_pool_t. * */ /* * Copyright (C) 2005 Jan Hutter, Martin Willi * Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include "prime_pool.h" #include #include #include typedef struct prime_list_t prime_list_t; /** * A prime_list_t contains prime for a specific size. */ struct prime_list_t { /** * Size of the stored primes */ size_t prime_size; /** * is this much used prime_size ? */ u_int32_t usage; /** * list of primes */ linked_list_t *primes; }; typedef struct private_prime_pool_t private_prime_pool_t; /** * @brief Private Variables and Functions of prime_pool class * */ struct private_prime_pool_t { /** * Public part of the prime_pool_t object */ prime_pool_t public; /** * A list which contains a set of prime_list_t's */ linked_list_t *prime_lists; /** * prime generation is stopped if more than * that primes of a kind are already generated */ int generation_limit; /** * access to prime_lists is locked through this mutex */ pthread_mutex_t mutex; /** * If the queue is empty a thread has to wait * This condvar is used to wake up such a thread */ pthread_cond_t condvar; /** * prime generation thread */ pthread_t thread; /** * Function for the prime thread, generate primes */ void (*generate_primes) (private_prime_pool_t *this); /** * calculate a prime of requested size */ void (*compute_prime) (private_prime_pool_t *this, size_t prime_size, mpz_t *prime); }; /** * implements prime_pool_t.get_count */ static int get_count(private_prime_pool_t *this, size_t prime_size) { int count = 0; iterator_t *iterator; pthread_mutex_lock(&(this->mutex)); iterator = this->prime_lists->create_iterator(this->prime_lists, TRUE); while (iterator->has_next(iterator)) { prime_list_t *prime_list; iterator->current(iterator, (void*)&prime_list); if (prime_list->prime_size == prime_size) { count = prime_list->primes->get_count(prime_list->primes); break; } } iterator->destroy(iterator); pthread_mutex_unlock(&(this->mutex)); return count; } /** * implements prime_pool_t.get_prime */ static void get_prime(private_prime_pool_t *this, size_t prime_size, mpz_t *prime) { bool prime_found = FALSE; iterator_t *iterator; bool create_new_list = TRUE; pthread_mutex_lock(&(this->mutex)); iterator = this->prime_lists->create_iterator(this->prime_lists, TRUE); while (iterator->has_next(iterator)) { prime_list_t *prime_list; iterator->current(iterator, (void*)&prime_list); if (prime_list->prime_size == prime_size) { mpz_t *removed_prime; create_new_list = FALSE; prime_list->usage += 2; if (prime_list->primes->remove_first(prime_list->primes, (void*)&removed_prime) == SUCCESS) { mpz_init_set(*prime, *removed_prime); mpz_clear(*removed_prime); allocator_free(removed_prime); prime_found = TRUE; } /* wake up prime thread, he may be sleeping */ pthread_cond_signal(&(this->condvar)); break; } } iterator->destroy(iterator); if (create_new_list) { /* there is no list for this prime size, create one */ prime_list_t *prime_list; prime_list = allocator_alloc_thing(prime_list_t); prime_list->usage = 1; prime_list->primes = linked_list_create(); prime_list->prime_size = prime_size; this->prime_lists->insert_last(this->prime_lists, (void*)prime_list); /* wake up prime thread, he may be sleeping */ pthread_cond_signal(&(this->condvar)); } pthread_mutex_unlock(&(this->mutex)); if (!prime_found) { /* no prime found, create one ourself */ this->compute_prime(this, prime_size, prime); } } /** * implements private_prime_pool_t.compute_prime */ void compute_prime(private_prime_pool_t *this, size_t prime_size, mpz_t *prime) { randomizer_t *randomizer; chunk_t random_bytes; randomizer = randomizer_create(); mpz_init(*prime); do { /* TODO change to true random device ? */ randomizer->allocate_pseudo_random_bytes(randomizer, prime_size, &random_bytes); /* make sure most significant bit is set */ random_bytes.ptr[0] = random_bytes.ptr[0] | 0x80; /* convert chunk to mpz value */ mpz_import(*prime, random_bytes.len, 1, 1, 1, 0, random_bytes.ptr); /* get next prime */ mpz_nextprime (*prime, *prime); allocator_free(random_bytes.ptr); } /* check if it isnt too large */ while (((mpz_sizeinbase(*prime, 2) + 7) / 8) > prime_size); randomizer->destroy(randomizer); } /** * implements private_prime_pool_t.generate_primes */ void generate_primes(private_prime_pool_t *this) { /* allow cancellation */ pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL); /* reduce priority */ while (TRUE) { prime_list_t *selected_prime_list = NULL; u_int32_t max_usage = 0; iterator_t *iterator; mpz_t *prime; pthread_mutex_lock(&(this->mutex)); /* get aprime to generate */ iterator = this->prime_lists->create_iterator(this->prime_lists, TRUE); while (iterator->has_next(iterator)) { prime_list_t *prime_list; iterator->current(iterator, (void*)&prime_list); if (prime_list->usage > max_usage) { if (prime_list->primes->get_count(prime_list->primes) < this->generation_limit) { /* there is work to do */ max_usage = prime_list->usage; selected_prime_list = prime_list; } } } iterator->destroy(iterator); if (selected_prime_list == NULL) { /* wait, be able to cancel */ pthread_cleanup_push((void(*)(void*))pthread_mutex_unlock, (void*)&(this->mutex)); pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL); pthread_cond_wait(&(this->condvar), &(this->mutex)); pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL); pthread_cleanup_pop(0); } pthread_mutex_unlock(&(this->mutex)); if (selected_prime_list != NULL) { /* generate the prime of requested size */ prime = allocator_alloc_thing(mpz_t); compute_prime(this, selected_prime_list->prime_size, prime); /* insert prime */ pthread_mutex_lock(&(this->mutex)); selected_prime_list->primes->insert_last(selected_prime_list->primes, (void*)prime); pthread_mutex_unlock(&(this->mutex)); } } } /** * implements prime_pool_t.destroy */ static void destroy (private_prime_pool_t *this) { if (this->generation_limit > 0) { pthread_cancel(this->thread); pthread_join(this->thread, NULL); } while ((this->prime_lists->get_count(this->prime_lists) > 0)) { prime_list_t *prime_list; this->prime_lists->remove_last(this->prime_lists, (void*)&prime_list); /* clear every mpz */ while (prime_list->primes->get_count(prime_list->primes) > 0) { mpz_t *prime; prime_list->primes->remove_last(prime_list->primes, (void**)&prime); mpz_clear(*prime); allocator_free(prime); } prime_list->primes->destroy(prime_list->primes); allocator_free(prime_list); } this->prime_lists->destroy(this->prime_lists); pthread_mutex_destroy(&(this->mutex)); pthread_cond_destroy(&(this->condvar)); allocator_free(this); } /* * * Documented in header */ prime_pool_t *prime_pool_create(int generation_limit) { private_prime_pool_t *this = allocator_alloc_thing(private_prime_pool_t); /* public functions */ this->public.get_count = (int(*)(prime_pool_t*,size_t)) get_count; this->public.get_prime = (void(*)(prime_pool_t*,size_t,mpz_t*)) get_prime; this->public.destroy = (void(*)(prime_pool_t*)) destroy; /* private members */ this->generate_primes = generate_primes; this->compute_prime = compute_prime; this->generation_limit = generation_limit; this->prime_lists = linked_list_create(); pthread_mutex_init(&(this->mutex), NULL); pthread_cond_init(&(this->condvar), NULL); if (generation_limit > 0) { if (pthread_create(&(this->thread), NULL, (void*(*)(void*))this->generate_primes, this) != 0) { pthread_mutex_destroy(&(this->mutex)); pthread_cond_destroy(&(this->condvar)); this->prime_lists->destroy(this->prime_lists); allocator_free(this); return NULL; } } return (&this->public); }