/** * @file rsa_public_key.c * * @brief Implementation of rsa_public_key_t. * */ /* * Copyright (C) 2005 Jan Hutter, Martin Willi * Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include "rsa_public_key.h" #include #include #include /* * Since we don't have an ASN1 parser/generator, * we use these predefined values for * hash algorithm oids. These also contain * the length of the following hash. * These values are also used in rsa_private_key.c. */ u_int8_t md2_oid[18] = { 0x30,0x20,0x30,0x0c,0x06,0x08,0x2a,0x86, 0x48,0x86,0xf7,0x0d,0x02,0x02,0x05,0x00, 0x04,0x10 }; u_int8_t md5_oid[] = { 0x30,0x20,0x30,0x0c,0x06,0x08,0x2a,0x86, 0x48,0x86,0xf7,0x0d,0x02,0x05,0x05,0x00, 0x04,0x10 }; u_int8_t sha1_oid[] = { 0x30,0x21,0x30,0x09,0x06,0x05,0x2b,0x0e, 0x03,0x02,0x1a,0x05,0x00,0x04,0x14 }; u_int8_t sha256_oid[] = { 0x30,0x31,0x30,0x0d,0x06,0x09,0x60,0x86, 0x48,0x01,0x65,0x03,0x04,0x02,0x01,0x05, 0x00,0x04,0x20 }; u_int8_t sha384_oid[] = { 0x30,0x41,0x30,0x0d,0x06,0x09,0x60,0x86, 0x48,0x01,0x65,0x03,0x04,0x02,0x02,0x05, 0x00,0x04,0x30 }; u_int8_t sha512_oid[] = { 0x30,0x51,0x30,0x0d,0x06,0x09,0x60,0x86, 0x48,0x01,0x65,0x03,0x04,0x02,0x03,0x05, 0x00,0x04,0x40 }; typedef struct private_rsa_public_key_t private_rsa_public_key_t; /** * Private data structure with signing context. */ struct private_rsa_public_key_t { /** * Public interface for this signer. */ rsa_public_key_t public; /** * Is the key already set ? */ bool is_key_set; /** * Public modulus. */ mpz_t n; /** * Public exponent. */ mpz_t e; /** * Keysize in bytes. */ size_t k; /** * @brief Implements the RSAEP algorithm specified in PKCS#1. * * @param this calling object * @param data data to process * @return processed data */ chunk_t (*rsaep) (private_rsa_public_key_t *this, chunk_t data); /** * @brief Implements the RSASVP1 algorithm specified in PKCS#1. * * @param this calling object * @param data data to process * @return processed data */ chunk_t (*rsavp1) (private_rsa_public_key_t *this, chunk_t data); }; /** * Implementation of private_rsa_public_key_t.rsadp and private_rsa_public_key_t.rsavp1 */ static chunk_t rsaep(private_rsa_public_key_t *this, chunk_t data) { mpz_t m, c; chunk_t encrypted; mpz_init(c); mpz_init(m); mpz_import(m, data.len, 1, 1, 1, 0, data.ptr); mpz_powm(c, m, this->e, this->n); encrypted.len = this->k; encrypted.ptr = mpz_export(NULL, NULL, 1, encrypted.len, 1, 0, c); mpz_clear(c); mpz_clear(m); return encrypted; } /** * Implementation of rsa_public_key.verify_emsa_signature. */ static status_t verify_emsa_pkcs1_signature(private_rsa_public_key_t *this, chunk_t data, chunk_t signature) { hasher_t *hasher = NULL; chunk_t hash; chunk_t em; u_int8_t *pos; if(!this->is_key_set) { return INVALID_STATE; } if (signature.len > this->k) { return INVALID_ARG; } /* unpack signature */ em = this->rsavp1(this, signature); /* result should look like this: * EM = 0x00 || 0x01 || PS || 0x00 || T. * PS = 0xFF padding, with length to fill em * T = oid || hash */ /* check magic bytes */ if ((*(em.ptr) != 0x00) || (*(em.ptr+1) != 0x01)) { allocator_free(em.ptr); return FAILED; } /* find magic 0x00 */ pos = em.ptr + 2; while (pos <= em.ptr + em.len) { if (*pos == 0x00) { /* found magic byte, stop */ pos++; break; } else if (*pos != 0xFF) { /* bad padding, decryption failed ?!*/ allocator_free(em.ptr); return FAILED; } pos++; } if (pos + 20 > em.ptr + em.len) { /* not enought room for oid compare */ allocator_free(em.ptr); return FAILED; } if (memcmp(md2_oid, pos, sizeof(md2_oid)) == 0) { hasher = hasher_create(HASH_MD2); pos += sizeof(md2_oid); } else if (memcmp(md5_oid, pos, sizeof(md5_oid)) == 0) { hasher = hasher_create(HASH_MD5); pos += sizeof(md5_oid); } else if (memcmp(sha1_oid, pos, sizeof(sha1_oid)) == 0) { hasher = hasher_create(HASH_SHA1); pos += sizeof(sha1_oid); } else if (memcmp(sha256_oid, pos, sizeof(sha256_oid)) == 0) { hasher = hasher_create(HASH_SHA256); pos += sizeof(sha256_oid); } else if (memcmp(sha384_oid, pos, sizeof(sha384_oid)) == 0) { hasher = hasher_create(HASH_SHA384); pos += sizeof(sha384_oid); } else if (memcmp(sha512_oid, pos, sizeof(sha512_oid)) == 0) { hasher = hasher_create(HASH_SHA512); pos += sizeof(sha512_oid); } if (hasher == NULL) { /* not supported hash algorithm */ allocator_free(em.ptr); return NOT_SUPPORTED; } if (pos + hasher->get_block_size(hasher) != em.ptr + em.len) { /* bad length */ allocator_free(em.ptr); hasher->destroy(hasher); return FAILED; } /* build own hash for a compare */ hasher->allocate_hash(hasher, data, &hash); hasher->destroy(hasher); if (memcmp(hash.ptr, pos, hash.len) != 0) { /* hash does not equal */ allocator_free(hash.ptr); allocator_free(em.ptr); return FAILED; } /* seems good */ allocator_free(hash.ptr); allocator_free(em.ptr); return SUCCESS; } /** * Implementation of rsa_public_key.set_key. */ static status_t set_key(private_rsa_public_key_t *this, chunk_t key) { chunk_t n, e; n.len = key.len/2; n.ptr = key.ptr; e.len = n.len; e.ptr = key.ptr + n.len; mpz_init(this->n); mpz_init(this->e); mpz_import(this->n, n.len, 1, 1, 1, 0, n.ptr); mpz_import(this->e, n.len, 1, 1, 1, 0, e.ptr); this->k = n.len; this->is_key_set = TRUE; return SUCCESS; } /** * Implementation of rsa_public_key.get_key. */ static status_t get_key(private_rsa_public_key_t *this, chunk_t *key) { if (!this->is_key_set) { return INVALID_STATE; } chunk_t n, e; n.len = this->k; n.ptr = mpz_export(NULL, NULL, 1, n.len, 1, 0, this->n); e.len = this->k; e.ptr = mpz_export(NULL, NULL, 1, e.len, 1, 0, this->e); key->len = this->k * 2; key->ptr = allocator_alloc(key->len); memcpy(key->ptr, n.ptr, n.len); memcpy(key->ptr + n.len, e.ptr, e.len); allocator_free(n.ptr); allocator_free(e.ptr); return SUCCESS; } /** * Implementation of rsa_public_key.load_key. */ static status_t load_key(private_rsa_public_key_t *this, char *file) { return NOT_SUPPORTED; } /** * Implementation of rsa_public_key.save_key. */ static status_t save_key(private_rsa_public_key_t *this, char *file) { return NOT_SUPPORTED; } /** * Implementation of rsa_public_key.destroy. */ static void destroy(private_rsa_public_key_t *this) { if (this->is_key_set) { mpz_clear(this->n); mpz_clear(this->e); } allocator_free(this); } /* * Described in header. */ rsa_public_key_t *rsa_public_key_create() { private_rsa_public_key_t *this = allocator_alloc_thing(private_rsa_public_key_t); /* public functions */ this->public.verify_emsa_pkcs1_signature = (status_t (*) (rsa_public_key_t*,chunk_t,chunk_t))verify_emsa_pkcs1_signature; this->public.set_key = (status_t (*) (rsa_public_key_t*,chunk_t))set_key; this->public.get_key = (status_t (*) (rsa_public_key_t*,chunk_t*))get_key; this->public.load_key = (status_t (*) (rsa_public_key_t*,char*))load_key; this->public.save_key = (status_t (*) (rsa_public_key_t*,char*))save_key; this->public.destroy = (void (*) (rsa_public_key_t*))destroy; /* private functions */ this->rsaep = rsaep; this->rsavp1 = rsaep; /* same algorithm */ this->is_key_set = FALSE; return &(this->public); }