/* * Copyright (C) 2006-2008 Tobias Brunner * Copyright (C) 2005-2007 Martin Willi * Copyright (C) 2006-2007 Fabian Hartmann, Noah Heusser * Copyright (C) 2006 Daniel Roethlisberger * Copyright (C) 2005 Jan Hutter * Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * $Id$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include "kernel_netlink_ipsec.h" #include "kernel_netlink_shared.h" #include #include #include #include #include #include #include /** required for Linux 2.6.26 kernel and later */ #ifndef XFRM_STATE_AF_UNSPEC #define XFRM_STATE_AF_UNSPEC 32 #endif /** default priority of installed policies */ #define PRIO_LOW 3000 #define PRIO_HIGH 2000 /** * Create ORable bitfield of XFRM NL groups */ #define XFRMNLGRP(x) (1<<(XFRMNLGRP_##x-1)) /** * returns a pointer to the first rtattr following the nlmsghdr *nlh and the * 'usual' netlink data x like 'struct xfrm_usersa_info' */ #define XFRM_RTA(nlh, x) ((struct rtattr*)(NLMSG_DATA(nlh) + NLMSG_ALIGN(sizeof(x)))) /** * returns a pointer to the next rtattr following rta. * !!! do not use this to parse messages. use RTA_NEXT and RTA_OK instead !!! */ #define XFRM_RTA_NEXT(rta) ((struct rtattr*)(((char*)(rta)) + RTA_ALIGN((rta)->rta_len))) /** * returns the total size of attached rta data * (after 'usual' netlink data x like 'struct xfrm_usersa_info') */ #define XFRM_PAYLOAD(nlh, x) NLMSG_PAYLOAD(nlh, sizeof(x)) typedef struct kernel_algorithm_t kernel_algorithm_t; /** * Mapping from the algorithms defined in IKEv2 to * kernel level algorithm names and their key length */ struct kernel_algorithm_t { /** * Identifier specified in IKEv2 */ int ikev2_id; /** * Name of the algorithm, as used as kernel identifier */ char *name; /** * Key length in bits, if fixed size */ u_int key_size; }; #define END_OF_LIST -1 /** * Algorithms for encryption */ static kernel_algorithm_t encryption_algs[] = { /* {ENCR_DES_IV64, "***", 0}, */ {ENCR_DES, "des", 64}, {ENCR_3DES, "des3_ede", 192}, /* {ENCR_RC5, "***", 0}, */ /* {ENCR_IDEA, "***", 0}, */ {ENCR_CAST, "cast128", 0}, {ENCR_BLOWFISH, "blowfish", 0}, /* {ENCR_3IDEA, "***", 0}, */ /* {ENCR_DES_IV32, "***", 0}, */ {ENCR_NULL, "cipher_null", 0}, {ENCR_AES_CBC, "aes", 0}, /* {ENCR_AES_CTR, "***", 0}, */ {ENCR_AES_CCM_ICV8, "rfc4309(ccm(aes))", 64}, /* key_size = ICV size */ {ENCR_AES_CCM_ICV12, "rfc4309(ccm(aes))", 96}, /* key_size = ICV size */ {ENCR_AES_CCM_ICV16, "rfc4309(ccm(aes))", 128}, /* key_size = ICV size */ {ENCR_AES_GCM_ICV8, "rfc4106(gcm(aes))", 64}, /* key_size = ICV size */ {ENCR_AES_GCM_ICV12, "rfc4106(gcm(aes))", 96}, /* key_size = ICV size */ {ENCR_AES_GCM_ICV16, "rfc4106(gcm(aes))", 128}, /* key_size = ICV size */ {END_OF_LIST, NULL, 0}, }; /** * Algorithms for integrity protection */ static kernel_algorithm_t integrity_algs[] = { {AUTH_HMAC_MD5_96, "md5", 128}, {AUTH_HMAC_SHA1_96, "sha1", 160}, {AUTH_HMAC_SHA2_256_128, "sha256", 256}, {AUTH_HMAC_SHA2_384_192, "sha384", 384}, {AUTH_HMAC_SHA2_512_256, "sha512", 512}, /* {AUTH_DES_MAC, "***", 0}, */ /* {AUTH_KPDK_MD5, "***", 0}, */ {AUTH_AES_XCBC_96, "xcbc(aes)", 128}, {END_OF_LIST, NULL, 0}, }; /** * Algorithms for IPComp */ static kernel_algorithm_t compression_algs[] = { /* {IPCOMP_OUI, "***", 0}, */ {IPCOMP_DEFLATE, "deflate", 0}, {IPCOMP_LZS, "lzs", 0}, {IPCOMP_LZJH, "lzjh", 0}, {END_OF_LIST, NULL, 0}, }; /** * Look up a kernel algorithm name and its key size */ static char* lookup_algorithm(kernel_algorithm_t *kernel_algo, u_int16_t ikev2_algo, u_int16_t *key_size) { while (kernel_algo->ikev2_id != END_OF_LIST) { if (ikev2_algo == kernel_algo->ikev2_id) { /* match, evaluate key length */ if (key_size && *key_size == 0) { /* update key size if not set */ *key_size = kernel_algo->key_size; } return kernel_algo->name; } kernel_algo++; } return NULL; } typedef struct route_entry_t route_entry_t; /** * installed routing entry */ struct route_entry_t { /** Name of the interface the route is bound to */ char *if_name; /** Source ip of the route */ host_t *src_ip; /** gateway for this route */ host_t *gateway; /** Destination net */ chunk_t dst_net; /** Destination net prefixlen */ u_int8_t prefixlen; }; /** * destroy an route_entry_t object */ static void route_entry_destroy(route_entry_t *this) { free(this->if_name); this->src_ip->destroy(this->src_ip); this->gateway->destroy(this->gateway); chunk_free(&this->dst_net); free(this); } typedef struct policy_entry_t policy_entry_t; /** * installed kernel policy. */ struct policy_entry_t { /** direction of this policy: in, out, forward */ u_int8_t direction; /** parameters of installed policy */ struct xfrm_selector sel; /** associated route installed for this policy */ route_entry_t *route; /** by how many CHILD_SA's this policy is used */ u_int refcount; }; typedef struct private_kernel_netlink_ipsec_t private_kernel_netlink_ipsec_t; /** * Private variables and functions of kernel_netlink class. */ struct private_kernel_netlink_ipsec_t { /** * Public part of the kernel_netlink_t object. */ kernel_netlink_ipsec_t public; /** * mutex to lock access to various lists */ pthread_mutex_t mutex; /** * List of installed policies (policy_entry_t) */ linked_list_t *policies; /** * job receiving netlink events */ callback_job_t *job; /** * Netlink xfrm socket (IPsec) */ netlink_socket_t *socket_xfrm; /** * netlink xfrm socket to receive acquire and expire events */ int socket_xfrm_events; /** * whether to install routes along policies */ bool install_routes; }; /** * convert a IKEv2 specific protocol identifier to the kernel one */ static u_int8_t proto_ike2kernel(protocol_id_t proto) { switch (proto) { case PROTO_ESP: return IPPROTO_ESP; case PROTO_AH: return IPPROTO_AH; default: return proto; } } /** * reverse of ike2kernel */ static protocol_id_t proto_kernel2ike(u_int8_t proto) { switch (proto) { case IPPROTO_ESP: return PROTO_ESP; case IPPROTO_AH: return PROTO_AH; default: return proto; } } /** * convert a host_t to a struct xfrm_address */ static void host2xfrm(host_t *host, xfrm_address_t *xfrm) { chunk_t chunk = host->get_address(host); memcpy(xfrm, chunk.ptr, min(chunk.len, sizeof(xfrm_address_t))); } /** * convert a struct xfrm_address to a host_t */ static host_t* xfrm2host(int family, xfrm_address_t *xfrm, u_int16_t port) { chunk_t chunk; switch (family) { case AF_INET: chunk = chunk_create((u_char*)&xfrm->a4, sizeof(xfrm->a4)); break; case AF_INET6: chunk = chunk_create((u_char*)&xfrm->a6, sizeof(xfrm->a6)); break; default: return NULL; } return host_create_from_chunk(family, chunk, ntohs(port)); } /** * convert a traffic selector address range to subnet and its mask. */ static void ts2subnet(traffic_selector_t* ts, xfrm_address_t *net, u_int8_t *mask) { host_t *net_host; chunk_t net_chunk; ts->to_subnet(ts, &net_host, mask); net_chunk = net_host->get_address(net_host); memcpy(net, net_chunk.ptr, net_chunk.len); net_host->destroy(net_host); } /** * convert a traffic selector port range to port/portmask */ static void ts2ports(traffic_selector_t* ts, u_int16_t *port, u_int16_t *mask) { /* linux does not seem to accept complex portmasks. Only * any or a specific port is allowed. We set to any, if we have * a port range, or to a specific, if we have one port only. */ u_int16_t from, to; from = ts->get_from_port(ts); to = ts->get_to_port(ts); if (from == to) { *port = htons(from); *mask = ~0; } else { *port = 0; *mask = 0; } } /** * convert a pair of traffic_selectors to a xfrm_selector */ static struct xfrm_selector ts2selector(traffic_selector_t *src, traffic_selector_t *dst) { struct xfrm_selector sel; memset(&sel, 0, sizeof(sel)); sel.family = (src->get_type(src) == TS_IPV4_ADDR_RANGE) ? AF_INET : AF_INET6; /* src or dest proto may be "any" (0), use more restrictive one */ sel.proto = max(src->get_protocol(src), dst->get_protocol(dst)); ts2subnet(dst, &sel.daddr, &sel.prefixlen_d); ts2subnet(src, &sel.saddr, &sel.prefixlen_s); ts2ports(dst, &sel.dport, &sel.dport_mask); ts2ports(src, &sel.sport, &sel.sport_mask); sel.ifindex = 0; sel.user = 0; return sel; } /** * process a XFRM_MSG_ACQUIRE from kernel */ static void process_acquire(private_kernel_netlink_ipsec_t *this, struct nlmsghdr *hdr) { u_int32_t reqid = 0; int proto = 0; job_t *job; struct rtattr *rtattr = XFRM_RTA(hdr, struct xfrm_user_acquire); size_t rtsize = XFRM_PAYLOAD(hdr, struct xfrm_user_tmpl); if (RTA_OK(rtattr, rtsize)) { if (rtattr->rta_type == XFRMA_TMPL) { struct xfrm_user_tmpl* tmpl = (struct xfrm_user_tmpl*)RTA_DATA(rtattr); reqid = tmpl->reqid; proto = tmpl->id.proto; } } switch (proto) { case 0: case IPPROTO_ESP: case IPPROTO_AH: break; default: /* acquire for AH/ESP only, not for IPCOMP */ return; } if (reqid == 0) { DBG1(DBG_KNL, "received a XFRM_MSG_ACQUIRE, but no reqid found"); return; } DBG2(DBG_KNL, "received a XFRM_MSG_ACQUIRE"); DBG1(DBG_KNL, "creating acquire job for CHILD_SA with reqid {%d}", reqid); job = (job_t*)acquire_job_create(reqid); charon->processor->queue_job(charon->processor, job); } /** * process a XFRM_MSG_EXPIRE from kernel */ static void process_expire(private_kernel_netlink_ipsec_t *this, struct nlmsghdr *hdr) { job_t *job; protocol_id_t protocol; u_int32_t spi, reqid; struct xfrm_user_expire *expire; expire = (struct xfrm_user_expire*)NLMSG_DATA(hdr); protocol = proto_kernel2ike(expire->state.id.proto); spi = expire->state.id.spi; reqid = expire->state.reqid; DBG2(DBG_KNL, "received a XFRM_MSG_EXPIRE"); if (protocol != PROTO_ESP && protocol != PROTO_AH) { DBG2(DBG_KNL, "ignoring XFRM_MSG_EXPIRE for SA with SPI %.8x and reqid {%d} " "which is not a CHILD_SA", ntohl(spi), reqid); return; } DBG1(DBG_KNL, "creating %s job for %N CHILD_SA with SPI %.8x and reqid {%d}", expire->hard ? "delete" : "rekey", protocol_id_names, protocol, ntohl(spi), reqid); if (expire->hard) { job = (job_t*)delete_child_sa_job_create(reqid, protocol, spi); } else { job = (job_t*)rekey_child_sa_job_create(reqid, protocol, spi); } charon->processor->queue_job(charon->processor, job); } /** * process a XFRM_MSG_MAPPING from kernel */ static void process_mapping(private_kernel_netlink_ipsec_t *this, struct nlmsghdr *hdr) { job_t *job; u_int32_t spi, reqid; struct xfrm_user_mapping *mapping; host_t *host; mapping = (struct xfrm_user_mapping*)NLMSG_DATA(hdr); spi = mapping->id.spi; reqid = mapping->reqid; DBG2(DBG_KNL, "received a XFRM_MSG_MAPPING"); if (proto_kernel2ike(mapping->id.proto) == PROTO_ESP) { host = xfrm2host(mapping->id.family, &mapping->new_saddr, mapping->new_sport); if (host) { DBG1(DBG_KNL, "NAT mappings of ESP CHILD_SA with SPI %.8x and " "reqid {%d} changed, queuing update job", ntohl(spi), reqid); job = (job_t*)update_sa_job_create(reqid, host); charon->processor->queue_job(charon->processor, job); } } } /** * Receives events from kernel */ static job_requeue_t receive_events(private_kernel_netlink_ipsec_t *this) { char response[1024]; struct nlmsghdr *hdr = (struct nlmsghdr*)response; struct sockaddr_nl addr; socklen_t addr_len = sizeof(addr); int len, oldstate; pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate); len = recvfrom(this->socket_xfrm_events, response, sizeof(response), 0, (struct sockaddr*)&addr, &addr_len); pthread_setcancelstate(oldstate, NULL); if (len < 0) { switch (errno) { case EINTR: /* interrupted, try again */ return JOB_REQUEUE_DIRECT; case EAGAIN: /* no data ready, select again */ return JOB_REQUEUE_DIRECT; default: DBG1(DBG_KNL, "unable to receive from xfrm event socket"); sleep(1); return JOB_REQUEUE_FAIR; } } if (addr.nl_pid != 0) { /* not from kernel. not interested, try another one */ return JOB_REQUEUE_DIRECT; } while (NLMSG_OK(hdr, len)) { switch (hdr->nlmsg_type) { case XFRM_MSG_ACQUIRE: process_acquire(this, hdr); break; case XFRM_MSG_EXPIRE: process_expire(this, hdr); break; case XFRM_MSG_MAPPING: process_mapping(this, hdr); break; default: break; } hdr = NLMSG_NEXT(hdr, len); } return JOB_REQUEUE_DIRECT; } /** * Get an SPI for a specific protocol from the kernel. */ static status_t get_spi_internal(private_kernel_netlink_ipsec_t *this, host_t *src, host_t *dst, u_int8_t proto, u_int32_t min, u_int32_t max, u_int32_t reqid, u_int32_t *spi) { unsigned char request[NETLINK_BUFFER_SIZE]; struct nlmsghdr *hdr, *out; struct xfrm_userspi_info *userspi; u_int32_t received_spi = 0; size_t len; memset(&request, 0, sizeof(request)); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST; hdr->nlmsg_type = XFRM_MSG_ALLOCSPI; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userspi_info)); userspi = (struct xfrm_userspi_info*)NLMSG_DATA(hdr); host2xfrm(src, &userspi->info.saddr); host2xfrm(dst, &userspi->info.id.daddr); userspi->info.id.proto = proto; userspi->info.mode = TRUE; /* tunnel mode */ userspi->info.reqid = reqid; userspi->info.family = src->get_family(src); userspi->min = min; userspi->max = max; if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS) { hdr = out; while (NLMSG_OK(hdr, len)) { switch (hdr->nlmsg_type) { case XFRM_MSG_NEWSA: { struct xfrm_usersa_info* usersa = NLMSG_DATA(hdr); received_spi = usersa->id.spi; break; } case NLMSG_ERROR: { struct nlmsgerr *err = NLMSG_DATA(hdr); DBG1(DBG_KNL, "allocating SPI failed: %s (%d)", strerror(-err->error), -err->error); break; } default: hdr = NLMSG_NEXT(hdr, len); continue; case NLMSG_DONE: break; } break; } free(out); } if (received_spi == 0) { return FAILED; } *spi = received_spi; return SUCCESS; } /** * Implementation of kernel_interface_t.get_spi. */ static status_t get_spi(private_kernel_netlink_ipsec_t *this, host_t *src, host_t *dst, protocol_id_t protocol, u_int32_t reqid, u_int32_t *spi) { DBG2(DBG_KNL, "getting SPI for reqid {%d}", reqid); if (get_spi_internal(this, src, dst, proto_ike2kernel(protocol), 0xc0000000, 0xcFFFFFFF, reqid, spi) != SUCCESS) { DBG1(DBG_KNL, "unable to get SPI for reqid {%d}", reqid); return FAILED; } DBG2(DBG_KNL, "got SPI %.8x for reqid {%d}", ntohl(*spi), reqid); return SUCCESS; } /** * Implementation of kernel_interface_t.get_cpi. */ static status_t get_cpi(private_kernel_netlink_ipsec_t *this, host_t *src, host_t *dst, u_int32_t reqid, u_int16_t *cpi) { u_int32_t received_spi = 0; DBG2(DBG_KNL, "getting CPI for reqid {%d}", reqid); if (get_spi_internal(this, src, dst, IPPROTO_COMP, 0x100, 0xEFFF, reqid, &received_spi) != SUCCESS) { DBG1(DBG_KNL, "unable to get CPI for reqid {%d}", reqid); return FAILED; } *cpi = htons((u_int16_t)ntohl(received_spi)); DBG2(DBG_KNL, "got CPI %.4x for reqid {%d}", ntohs(*cpi), reqid); return SUCCESS; } /** * Implementation of kernel_interface_t.add_sa. */ static status_t add_sa(private_kernel_netlink_ipsec_t *this, host_t *src, host_t *dst, u_int32_t spi, protocol_id_t protocol, u_int32_t reqid, u_int64_t expire_soft, u_int64_t expire_hard, u_int16_t enc_alg, u_int16_t enc_size, u_int16_t int_alg, u_int16_t int_size, prf_plus_t *prf_plus, ipsec_mode_t mode, u_int16_t ipcomp, bool encap, bool replace) { unsigned char request[NETLINK_BUFFER_SIZE]; char *alg_name; /* additional 4 octets KEYMAT required for AES-GCM as of RFC4106 8.1. */ u_int16_t add_keymat = 32; struct nlmsghdr *hdr; struct xfrm_usersa_info *sa; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "adding SAD entry with SPI %.8x and reqid {%d}", ntohl(spi), reqid); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; hdr->nlmsg_type = replace ? XFRM_MSG_UPDSA : XFRM_MSG_NEWSA; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_info)); sa = (struct xfrm_usersa_info*)NLMSG_DATA(hdr); host2xfrm(src, &sa->saddr); host2xfrm(dst, &sa->id.daddr); sa->id.spi = spi; sa->id.proto = proto_ike2kernel(protocol); sa->family = src->get_family(src); sa->mode = mode; if (mode == MODE_TUNNEL) { sa->flags |= XFRM_STATE_AF_UNSPEC; } sa->replay_window = (protocol == IPPROTO_COMP) ? 0 : 32; sa->reqid = reqid; /* we currently do not expire SAs by volume/packet count */ sa->lft.soft_byte_limit = XFRM_INF; sa->lft.hard_byte_limit = XFRM_INF; sa->lft.soft_packet_limit = XFRM_INF; sa->lft.hard_packet_limit = XFRM_INF; /* we use lifetimes since added, not since used */ sa->lft.soft_add_expires_seconds = expire_soft; sa->lft.hard_add_expires_seconds = expire_hard; sa->lft.soft_use_expires_seconds = 0; sa->lft.hard_use_expires_seconds = 0; struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_usersa_info); switch (enc_alg) { case ENCR_UNDEFINED: /* no encryption */ break; case ENCR_AES_CCM_ICV8: case ENCR_AES_CCM_ICV12: case ENCR_AES_CCM_ICV16: /* AES-CCM needs only 3 additional octets KEYMAT as of RFC 4309 7.1. */ add_keymat = 24; /* fall-through */ case ENCR_AES_GCM_ICV8: case ENCR_AES_GCM_ICV12: case ENCR_AES_GCM_ICV16: { u_int16_t icv_size = 0; rthdr->rta_type = XFRMA_ALG_AEAD; alg_name = lookup_algorithm(encryption_algs, enc_alg, &icv_size); if (alg_name == NULL) { DBG1(DBG_KNL, "algorithm %N not supported by kernel!", encryption_algorithm_names, enc_alg); return FAILED; } DBG2(DBG_KNL, " using encryption algorithm %N with key size %d", encryption_algorithm_names, enc_alg, enc_size); /* additional KEYMAT required */ enc_size += add_keymat; rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo_aead) + enc_size / 8); hdr->nlmsg_len += rthdr->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } struct xfrm_algo_aead* algo = (struct xfrm_algo_aead*)RTA_DATA(rthdr); algo->alg_key_len = enc_size; algo->alg_icv_len = icv_size; strcpy(algo->alg_name, alg_name); prf_plus->get_bytes(prf_plus, enc_size / 8, algo->alg_key); rthdr = XFRM_RTA_NEXT(rthdr); break; } default: { rthdr->rta_type = XFRMA_ALG_CRYPT; alg_name = lookup_algorithm(encryption_algs, enc_alg, &enc_size); if (alg_name == NULL) { DBG1(DBG_KNL, "algorithm %N not supported by kernel!", encryption_algorithm_names, enc_alg); return FAILED; } DBG2(DBG_KNL, " using encryption algorithm %N with key size %d", encryption_algorithm_names, enc_alg, enc_size); rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo) + enc_size / 8); hdr->nlmsg_len += rthdr->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr); algo->alg_key_len = enc_size; strcpy(algo->alg_name, alg_name); prf_plus->get_bytes(prf_plus, enc_size / 8, algo->alg_key); rthdr = XFRM_RTA_NEXT(rthdr); break; } } if (int_alg != AUTH_UNDEFINED) { rthdr->rta_type = XFRMA_ALG_AUTH; alg_name = lookup_algorithm(integrity_algs, int_alg, &int_size); if (alg_name == NULL) { DBG1(DBG_KNL, "algorithm %N not supported by kernel!", integrity_algorithm_names, int_alg); return FAILED; } DBG2(DBG_KNL, " using integrity algorithm %N with key size %d", integrity_algorithm_names, int_alg, int_size); rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo) + int_size / 8); hdr->nlmsg_len += rthdr->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr); algo->alg_key_len = int_size; strcpy(algo->alg_name, alg_name); prf_plus->get_bytes(prf_plus, int_size / 8, algo->alg_key); rthdr = XFRM_RTA_NEXT(rthdr); } if (ipcomp != IPCOMP_NONE) { rthdr->rta_type = XFRMA_ALG_COMP; alg_name = lookup_algorithm(compression_algs, ipcomp, NULL); if (alg_name == NULL) { DBG1(DBG_KNL, "algorithm %N not supported by kernel!", ipcomp_transform_names, ipcomp); return FAILED; } DBG2(DBG_KNL, " using compression algorithm %N", ipcomp_transform_names, ipcomp); rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo)); hdr->nlmsg_len += rthdr->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr); algo->alg_key_len = 0; strcpy(algo->alg_name, alg_name); rthdr = XFRM_RTA_NEXT(rthdr); } if (encap) { rthdr->rta_type = XFRMA_ENCAP; rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_encap_tmpl)); hdr->nlmsg_len += rthdr->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } struct xfrm_encap_tmpl* tmpl = (struct xfrm_encap_tmpl*)RTA_DATA(rthdr); tmpl->encap_type = UDP_ENCAP_ESPINUDP; tmpl->encap_sport = htons(src->get_port(src)); tmpl->encap_dport = htons(dst->get_port(dst)); memset(&tmpl->encap_oa, 0, sizeof (xfrm_address_t)); /* encap_oa could probably be derived from the * traffic selectors [rfc4306, p39]. In the netlink kernel implementation * pluto does the same as we do here but it uses encap_oa in the * pfkey implementation. BUT as /usr/src/linux/net/key/af_key.c indicates * the kernel ignores it anyway * -> does that mean that NAT-T encap doesn't work in transport mode? * No. The reason the kernel ignores NAT-OA is that it recomputes * (or, rather, just ignores) the checksum. If packets pass * the IPsec checks it marks them "checksum ok" so OA isn't needed. */ rthdr = XFRM_RTA_NEXT(rthdr); } if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS) { DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x", ntohl(spi)); return FAILED; } return SUCCESS; } /** * Get the replay state (i.e. sequence numbers) of an SA. */ static status_t get_replay_state(private_kernel_netlink_ipsec_t *this, u_int32_t spi, protocol_id_t protocol, host_t *dst, struct xfrm_replay_state *replay) { unsigned char request[NETLINK_BUFFER_SIZE]; struct nlmsghdr *hdr, *out = NULL; struct xfrm_aevent_id *out_aevent = NULL, *aevent_id; size_t len; struct rtattr *rta; size_t rtasize; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "querying replay state from SAD entry with SPI %.8x", ntohl(spi)); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST; hdr->nlmsg_type = XFRM_MSG_GETAE; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_aevent_id)); aevent_id = (struct xfrm_aevent_id*)NLMSG_DATA(hdr); aevent_id->flags = XFRM_AE_RVAL; host2xfrm(dst, &aevent_id->sa_id.daddr); aevent_id->sa_id.spi = spi; aevent_id->sa_id.proto = proto_ike2kernel(protocol); aevent_id->sa_id.family = dst->get_family(dst); if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS) { hdr = out; while (NLMSG_OK(hdr, len)) { switch (hdr->nlmsg_type) { case XFRM_MSG_NEWAE: { out_aevent = NLMSG_DATA(hdr); break; } case NLMSG_ERROR: { struct nlmsgerr *err = NLMSG_DATA(hdr); DBG1(DBG_KNL, "querying replay state from SAD entry failed: %s (%d)", strerror(-err->error), -err->error); break; } default: hdr = NLMSG_NEXT(hdr, len); continue; case NLMSG_DONE: break; } break; } } if (out_aevent == NULL) { DBG1(DBG_KNL, "unable to query replay state from SAD entry with SPI %.8x", ntohl(spi)); free(out); return FAILED; } rta = XFRM_RTA(out, struct xfrm_aevent_id); rtasize = XFRM_PAYLOAD(out, struct xfrm_aevent_id); while(RTA_OK(rta, rtasize)) { if (rta->rta_type == XFRMA_REPLAY_VAL) { memcpy(replay, RTA_DATA(rta), rta->rta_len); free(out); return SUCCESS; } rta = RTA_NEXT(rta, rtasize); } DBG1(DBG_KNL, "unable to query replay state from SAD entry with SPI %.8x", ntohl(spi)); free(out); return FAILED; } /** * Implementation of kernel_interface_t.update_sa. */ static status_t update_sa(private_kernel_netlink_ipsec_t *this, u_int32_t spi, protocol_id_t protocol, host_t *src, host_t *dst, host_t *new_src, host_t *new_dst, bool encap) { unsigned char request[NETLINK_BUFFER_SIZE], *pos; struct nlmsghdr *hdr, *out = NULL; struct xfrm_usersa_id *sa_id; struct xfrm_usersa_info *out_sa = NULL, *sa; size_t len; struct rtattr *rta; size_t rtasize; struct xfrm_encap_tmpl* tmpl = NULL; bool got_replay_state; struct xfrm_replay_state replay; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "querying SAD entry with SPI %.8x for update", ntohl(spi)); /* query the existing SA first */ hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST; hdr->nlmsg_type = XFRM_MSG_GETSA; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_id)); sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr); host2xfrm(dst, &sa_id->daddr); sa_id->spi = spi; sa_id->proto = proto_ike2kernel(protocol); sa_id->family = dst->get_family(dst); if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS) { hdr = out; while (NLMSG_OK(hdr, len)) { switch (hdr->nlmsg_type) { case XFRM_MSG_NEWSA: { out_sa = NLMSG_DATA(hdr); break; } case NLMSG_ERROR: { struct nlmsgerr *err = NLMSG_DATA(hdr); DBG1(DBG_KNL, "querying SAD entry failed: %s (%d)", strerror(-err->error), -err->error); break; } default: hdr = NLMSG_NEXT(hdr, len); continue; case NLMSG_DONE: break; } break; } } if (out_sa == NULL) { DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x", ntohl(spi)); free(out); return FAILED; } /* try to get the replay state */ got_replay_state = (get_replay_state( this, spi, protocol, dst, &replay) == SUCCESS); /* delete the old SA */ if (this->public.interface.del_sa(&this->public.interface, dst, spi, protocol) != SUCCESS) { DBG1(DBG_KNL, "unable to delete old SAD entry with SPI %.8x", ntohl(spi)); free(out); return FAILED; } DBG2(DBG_KNL, "updating SAD entry with SPI %.8x from %#H..%#H to %#H..%#H", ntohl(spi), src, dst, new_src, new_dst); /* copy over the SA from out to request */ hdr = (struct nlmsghdr*)request; memcpy(hdr, out, min(out->nlmsg_len, sizeof(request))); hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; hdr->nlmsg_type = XFRM_MSG_NEWSA; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_info)); sa = NLMSG_DATA(hdr); sa->family = new_dst->get_family(new_dst); if (!src->ip_equals(src, new_src)) { host2xfrm(new_src, &sa->saddr); } if (!dst->ip_equals(dst, new_dst)) { host2xfrm(new_dst, &sa->id.daddr); } rta = XFRM_RTA(out, struct xfrm_usersa_info); rtasize = XFRM_PAYLOAD(out, struct xfrm_usersa_info); pos = (u_char*)XFRM_RTA(hdr, struct xfrm_usersa_info); while(RTA_OK(rta, rtasize)) { /* copy all attributes, but not XFRMA_ENCAP if we are disabling it */ if (rta->rta_type != XFRMA_ENCAP || encap) { if (rta->rta_type == XFRMA_ENCAP) { /* update encap tmpl */ tmpl = (struct xfrm_encap_tmpl*)RTA_DATA(rta); tmpl->encap_sport = ntohs(new_src->get_port(new_src)); tmpl->encap_dport = ntohs(new_dst->get_port(new_dst)); } memcpy(pos, rta, rta->rta_len); pos += RTA_ALIGN(rta->rta_len); hdr->nlmsg_len += RTA_ALIGN(rta->rta_len); } rta = RTA_NEXT(rta, rtasize); } rta = (struct rtattr*)pos; if (tmpl == NULL && encap) { /* add tmpl if we are enabling it */ rta->rta_type = XFRMA_ENCAP; rta->rta_len = RTA_LENGTH(sizeof(struct xfrm_encap_tmpl)); hdr->nlmsg_len += rta->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } tmpl = (struct xfrm_encap_tmpl*)RTA_DATA(rta); tmpl->encap_type = UDP_ENCAP_ESPINUDP; tmpl->encap_sport = ntohs(new_src->get_port(new_src)); tmpl->encap_dport = ntohs(new_dst->get_port(new_dst)); memset(&tmpl->encap_oa, 0, sizeof (xfrm_address_t)); rta = XFRM_RTA_NEXT(rta); } if (got_replay_state) { /* copy the replay data if available */ rta->rta_type = XFRMA_REPLAY_VAL; rta->rta_len = RTA_LENGTH(sizeof(struct xfrm_replay_state)); hdr->nlmsg_len += rta->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } memcpy(RTA_DATA(rta), &replay, sizeof(replay)); rta = XFRM_RTA_NEXT(rta); } if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS) { DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x", ntohl(spi)); free(out); return FAILED; } free(out); return SUCCESS; } /** * Implementation of kernel_interface_t.del_sa. */ static status_t del_sa(private_kernel_netlink_ipsec_t *this, host_t *dst, u_int32_t spi, protocol_id_t protocol) { unsigned char request[NETLINK_BUFFER_SIZE]; struct nlmsghdr *hdr; struct xfrm_usersa_id *sa_id; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "deleting SAD entry with SPI %.8x", ntohl(spi)); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; hdr->nlmsg_type = XFRM_MSG_DELSA; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_id)); sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr); host2xfrm(dst, &sa_id->daddr); sa_id->spi = spi; sa_id->proto = proto_ike2kernel(protocol); sa_id->family = dst->get_family(dst); if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS) { DBG1(DBG_KNL, "unable to delete SAD entry with SPI %.8x", ntohl(spi)); return FAILED; } DBG2(DBG_KNL, "deleted SAD entry with SPI %.8x", ntohl(spi)); return SUCCESS; } /** * Implementation of kernel_interface_t.add_policy. */ static status_t add_policy(private_kernel_netlink_ipsec_t *this, host_t *src, host_t *dst, traffic_selector_t *src_ts, traffic_selector_t *dst_ts, policy_dir_t direction, protocol_id_t protocol, u_int32_t reqid, bool high_prio, ipsec_mode_t mode, u_int16_t ipcomp) { iterator_t *iterator; policy_entry_t *current, *policy; bool found = FALSE; unsigned char request[NETLINK_BUFFER_SIZE]; struct xfrm_userpolicy_info *policy_info; struct nlmsghdr *hdr; /* create a policy */ policy = malloc_thing(policy_entry_t); memset(policy, 0, sizeof(policy_entry_t)); policy->sel = ts2selector(src_ts, dst_ts); policy->direction = direction; /* find the policy, which matches EXACTLY */ pthread_mutex_lock(&this->mutex); iterator = this->policies->create_iterator(this->policies, TRUE); while (iterator->iterate(iterator, (void**)¤t)) { if (memeq(¤t->sel, &policy->sel, sizeof(struct xfrm_selector)) && policy->direction == current->direction) { /* use existing policy */ current->refcount++; DBG2(DBG_KNL, "policy %R === %R %N already exists, increasing " "refcount", src_ts, dst_ts, policy_dir_names, direction); free(policy); policy = current; found = TRUE; break; } } iterator->destroy(iterator); if (!found) { /* apply the new one, if we have no such policy */ this->policies->insert_last(this->policies, policy); policy->refcount = 1; } DBG2(DBG_KNL, "adding policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); memset(&request, 0, sizeof(request)); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; hdr->nlmsg_type = found ? XFRM_MSG_UPDPOLICY : XFRM_MSG_NEWPOLICY; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_info)); policy_info = (struct xfrm_userpolicy_info*)NLMSG_DATA(hdr); policy_info->sel = policy->sel; policy_info->dir = policy->direction; /* calculate priority based on source selector size, small size = high prio */ policy_info->priority = high_prio ? PRIO_HIGH : PRIO_LOW; policy_info->priority -= policy->sel.prefixlen_s * 10; policy_info->priority -= policy->sel.proto ? 2 : 0; policy_info->priority -= policy->sel.sport_mask ? 1 : 0; policy_info->action = XFRM_POLICY_ALLOW; policy_info->share = XFRM_SHARE_ANY; pthread_mutex_unlock(&this->mutex); /* policies don't expire */ policy_info->lft.soft_byte_limit = XFRM_INF; policy_info->lft.soft_packet_limit = XFRM_INF; policy_info->lft.hard_byte_limit = XFRM_INF; policy_info->lft.hard_packet_limit = XFRM_INF; policy_info->lft.soft_add_expires_seconds = 0; policy_info->lft.hard_add_expires_seconds = 0; policy_info->lft.soft_use_expires_seconds = 0; policy_info->lft.hard_use_expires_seconds = 0; struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_userpolicy_info); rthdr->rta_type = XFRMA_TMPL; rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_user_tmpl)); hdr->nlmsg_len += rthdr->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } struct xfrm_user_tmpl *tmpl = (struct xfrm_user_tmpl*)RTA_DATA(rthdr); if (ipcomp != IPCOMP_NONE) { tmpl->reqid = reqid; tmpl->id.proto = IPPROTO_COMP; tmpl->aalgos = tmpl->ealgos = tmpl->calgos = ~0; tmpl->mode = mode; tmpl->optional = direction != POLICY_OUT; tmpl->family = src->get_family(src); host2xfrm(src, &tmpl->saddr); host2xfrm(dst, &tmpl->id.daddr); /* add an additional xfrm_user_tmpl */ rthdr->rta_len += RTA_LENGTH(sizeof(struct xfrm_user_tmpl)); hdr->nlmsg_len += RTA_LENGTH(sizeof(struct xfrm_user_tmpl)); if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } tmpl++; } tmpl->reqid = reqid; tmpl->id.proto = proto_ike2kernel(protocol); tmpl->aalgos = tmpl->ealgos = tmpl->calgos = ~0; tmpl->mode = mode; tmpl->family = src->get_family(src); host2xfrm(src, &tmpl->saddr); host2xfrm(dst, &tmpl->id.daddr); if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS) { DBG1(DBG_KNL, "unable to add policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); return FAILED; } /* install a route, if: * - we are NOT updating a policy * - this is a forward policy (to just get one for each child) * - we are in tunnel mode * - we are not using IPv6 (does not work correctly yet!) * - routing is not disabled via strongswan.conf */ if (policy->route == NULL && direction == POLICY_FWD && mode != MODE_TRANSPORT && src->get_family(src) != AF_INET6 && this->install_routes) { route_entry_t *route = malloc_thing(route_entry_t); if (charon->kernel_interface->get_address_by_ts(charon->kernel_interface, dst_ts, &route->src_ip) == SUCCESS) { /* get the nexthop to src (src as we are in POLICY_FWD).*/ route->gateway = charon->kernel_interface->get_nexthop( charon->kernel_interface, src); route->if_name = charon->kernel_interface->get_interface( charon->kernel_interface, dst); route->dst_net = chunk_alloc(policy->sel.family == AF_INET ? 4 : 16); memcpy(route->dst_net.ptr, &policy->sel.saddr, route->dst_net.len); route->prefixlen = policy->sel.prefixlen_s; switch (charon->kernel_interface->add_route(charon->kernel_interface, route->dst_net, route->prefixlen, route->gateway, route->src_ip, route->if_name)) { default: DBG1(DBG_KNL, "unable to install source route for %H", route->src_ip); /* FALL */ case ALREADY_DONE: /* route exists, do not uninstall */ route_entry_destroy(route); break; case SUCCESS: /* cache the installed route */ policy->route = route; break; } } else { free(route); } } return SUCCESS; } /** * Implementation of kernel_interface_t.query_policy. */ static status_t query_policy(private_kernel_netlink_ipsec_t *this, traffic_selector_t *src_ts, traffic_selector_t *dst_ts, policy_dir_t direction, u_int32_t *use_time) { unsigned char request[NETLINK_BUFFER_SIZE]; struct nlmsghdr *out = NULL, *hdr; struct xfrm_userpolicy_id *policy_id; struct xfrm_userpolicy_info *policy = NULL; size_t len; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "querying policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST; hdr->nlmsg_type = XFRM_MSG_GETPOLICY; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_id)); policy_id = (struct xfrm_userpolicy_id*)NLMSG_DATA(hdr); policy_id->sel = ts2selector(src_ts, dst_ts); policy_id->dir = direction; if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS) { hdr = out; while (NLMSG_OK(hdr, len)) { switch (hdr->nlmsg_type) { case XFRM_MSG_NEWPOLICY: { policy = (struct xfrm_userpolicy_info*)NLMSG_DATA(hdr); break; } case NLMSG_ERROR: { struct nlmsgerr *err = NLMSG_DATA(hdr); DBG1(DBG_KNL, "querying policy failed: %s (%d)", strerror(-err->error), -err->error); break; } default: hdr = NLMSG_NEXT(hdr, len); continue; case NLMSG_DONE: break; } break; } } if (policy == NULL) { DBG2(DBG_KNL, "unable to query policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); free(out); return FAILED; } *use_time = (time_t)policy->curlft.use_time; free(out); return SUCCESS; } /** * Implementation of kernel_interface_t.del_policy. */ static status_t del_policy(private_kernel_netlink_ipsec_t *this, traffic_selector_t *src_ts, traffic_selector_t *dst_ts, policy_dir_t direction) { policy_entry_t *current, policy, *to_delete = NULL; route_entry_t *route; unsigned char request[NETLINK_BUFFER_SIZE]; struct nlmsghdr *hdr; struct xfrm_userpolicy_id *policy_id; iterator_t *iterator; DBG2(DBG_KNL, "deleting policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); /* create a policy */ memset(&policy, 0, sizeof(policy_entry_t)); policy.sel = ts2selector(src_ts, dst_ts); policy.direction = direction; /* find the policy */ iterator = this->policies->create_iterator_locked(this->policies, &this->mutex); while (iterator->iterate(iterator, (void**)¤t)) { if (memeq(¤t->sel, &policy.sel, sizeof(struct xfrm_selector)) && policy.direction == current->direction) { to_delete = current; if (--to_delete->refcount > 0) { /* is used by more SAs, keep in kernel */ DBG2(DBG_KNL, "policy still used by another CHILD_SA, not removed"); iterator->destroy(iterator); return SUCCESS; } /* remove if last reference */ iterator->remove(iterator); break; } } iterator->destroy(iterator); if (!to_delete) { DBG1(DBG_KNL, "deleting policy %R === %R %N failed, not found", src_ts, dst_ts, policy_dir_names, direction); return NOT_FOUND; } memset(&request, 0, sizeof(request)); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; hdr->nlmsg_type = XFRM_MSG_DELPOLICY; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_id)); policy_id = (struct xfrm_userpolicy_id*)NLMSG_DATA(hdr); policy_id->sel = to_delete->sel; policy_id->dir = direction; route = to_delete->route; free(to_delete); if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS) { DBG1(DBG_KNL, "unable to delete policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); return FAILED; } if (route) { if (charon->kernel_interface->del_route(charon->kernel_interface, route->dst_net, route->prefixlen, route->gateway, route->src_ip, route->if_name) != SUCCESS) { DBG1(DBG_KNL, "error uninstalling route installed with " "policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); } route_entry_destroy(route); } return SUCCESS; } /** * Implementation of kernel_interface_t.destroy. */ static void destroy(private_kernel_netlink_ipsec_t *this) { this->job->cancel(this->job); close(this->socket_xfrm_events); this->socket_xfrm->destroy(this->socket_xfrm); this->policies->destroy(this->policies); free(this); } /* * Described in header. */ kernel_netlink_ipsec_t *kernel_netlink_ipsec_create() { private_kernel_netlink_ipsec_t *this = malloc_thing(private_kernel_netlink_ipsec_t); struct sockaddr_nl addr; /* public functions */ this->public.interface.get_spi = (status_t(*)(kernel_ipsec_t*,host_t*,host_t*,protocol_id_t,u_int32_t,u_int32_t*))get_spi; this->public.interface.get_cpi = (status_t(*)(kernel_ipsec_t*,host_t*,host_t*,u_int32_t,u_int16_t*))get_cpi; this->public.interface.add_sa = (status_t(*)(kernel_ipsec_t *,host_t*,host_t*,u_int32_t,protocol_id_t,u_int32_t,u_int64_t,u_int64_t,u_int16_t,u_int16_t,u_int16_t,u_int16_t,prf_plus_t*,ipsec_mode_t,u_int16_t,bool,bool))add_sa; this->public.interface.update_sa = (status_t(*)(kernel_ipsec_t*,u_int32_t,protocol_id_t,host_t*,host_t*,host_t*,host_t*,bool))update_sa; this->public.interface.del_sa = (status_t(*)(kernel_ipsec_t*,host_t*,u_int32_t,protocol_id_t))del_sa; this->public.interface.add_policy = (status_t(*)(kernel_ipsec_t*,host_t*,host_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t,protocol_id_t,u_int32_t,bool,ipsec_mode_t,u_int16_t))add_policy; this->public.interface.query_policy = (status_t(*)(kernel_ipsec_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t,u_int32_t*))query_policy; this->public.interface.del_policy = (status_t(*)(kernel_ipsec_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t))del_policy; this->public.interface.destroy = (void(*)(kernel_ipsec_t*)) destroy; /* private members */ this->policies = linked_list_create(); pthread_mutex_init(&this->mutex, NULL); this->install_routes = lib->settings->get_bool(lib->settings, "charon.install_routes", TRUE); this->socket_xfrm = netlink_socket_create(NETLINK_XFRM); memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; /* create and bind XFRM socket for ACQUIRE & EXPIRE */ this->socket_xfrm_events = socket(AF_NETLINK, SOCK_RAW, NETLINK_XFRM); if (this->socket_xfrm_events <= 0) { charon->kill(charon, "unable to create XFRM event socket"); } addr.nl_groups = XFRMNLGRP(ACQUIRE) | XFRMNLGRP(EXPIRE) | XFRMNLGRP(MAPPING); if (bind(this->socket_xfrm_events, (struct sockaddr*)&addr, sizeof(addr))) { charon->kill(charon, "unable to bind XFRM event socket"); } this->job = callback_job_create((callback_job_cb_t)receive_events, this, NULL, NULL); charon->processor->queue_job(charon->processor, (job_t*)this->job); return &this->public; }