|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The API messages are used by zebra to exchange the interfaces, addresses,
routes and router-id information with its clients. To distinguish which
VRF the information belongs to, a new field "VRF ID" is added in the
message header. And hence the message version is increased to 3.
* The new field "VRF ID" in the message header:
Length (2 bytes)
Marker (1 byte)
Version (1 byte)
VRF ID (2 bytes, newly added)
Command (2 bytes)
- Client side:
- zclient_create_header() adds the VRF ID in the message header.
- zclient_read() extracts and validates the VRF ID from the header,
and passes the VRF ID to the callback functions registered to
the API messages.
- All relative functions are appended with a new parameter "vrf_id",
including all the callback functions.
- "vrf_id" is also added to "struct zapi_ipv4" and "struct zapi_ipv6".
Clients need to correctly set the VRF ID when using the API
functions zapi_ipv4_route() and zapi_ipv6_route().
- Till now all messages sent from a client have the default VRF ID
"0" in the header.
- The HELLO message is special, which is used as the heart-beat of
a client, and has no relation with VRF. The VRF ID in the HELLO
message header will always be 0 and ignored by zebra.
- Zebra side:
- zserv_create_header() adds the VRF ID in the message header.
- zebra_client_read() extracts and validates the VRF ID from the
header, and passes the VRF ID to the functions which process
the received messages.
- All relative functions are appended with a new parameter "vrf_id".
* Suppress the messages in a VRF which a client does not care:
Some clients may not care about the information in the VRF X, and
zebra should not send the messages in the VRF X to those clients.
Extra flags are used to indicate which VRF is registered by a client,
and a new message ZEBRA_VRF_UNREGISTER is introduced to let a client
can unregister a VRF when it does not need any information in that
VRF.
A client sends any message other than ZEBRA_VRF_UNREGISTER in a VRF
will automatically register to that VRF.
- lib/vrf:
A new utility "VRF bit-map" is provided to manage the flags for
VRFs, one bit per VRF ID.
- Use vrf_bitmap_init()/vrf_bitmap_free() to initialize/free a
bit-map;
- Use vrf_bitmap_set()/vrf_bitmap_unset() to set/unset a flag
in the given bit-map, corresponding to the given VRF ID;
- Use vrf_bitmap_check() to test whether the flag, in the given
bit-map and for the given VRF ID, is set.
- Client side:
- In "struct zclient", the following flags are changed from
"u_char" to "vrf_bitmap_t":
redist[ZEBRA_ROUTE_MAX]
default_information
These flags are extended for each VRF, and controlled by the
clients themselves (or with the help of zclient_redistribute()
and zclient_redistribute_default()).
- Zebra side:
- In "struct zserv", the following flags are changed from
"u_char" to "vrf_bitmap_t":
redist[ZEBRA_ROUTE_MAX]
redist_default
ifinfo
ridinfo
These flags are extended for each VRF, as the VRF registration
flags. They are maintained on receiving a ZEBRA_XXX_ADD or
ZEBRA_XXX_DELETE message.
When sending an interface/address/route/router-id message in
a VRF to a client, if the corresponding VRF registration flag
is not set, this message will not be dropped by zebra.
- A new function zread_vrf_unregister() is introduced to process
the new command ZEBRA_VRF_UNREGISTER. All the VRF registration
flags are cleared for the requested VRF.
Those clients, who support only the default VRF, will never receive
a message in a non-default VRF, thanks to the filter in zebra.
* New callback for the event of successful connection to zebra:
- zclient_start() is splitted, keeping only the code of connecting
to zebra.
- Now zclient_init()=>zclient_connect()=>zclient_start() operations
are purely dealing with the connection to zbera.
- Once zebra is successfully connected, at the end of zclient_start(),
a new callback is used to inform the client about connection.
- Till now, in the callback of connect-to-zebra event, all clients
send messages to zebra to request the router-id/interface/routes
information in the default VRF.
Of corse in future the client can do anything it wants in this
callback. For example, it may send requests for both default VRF
and some non-default VRFs.
Signed-off-by: Feng Lu <lu.feng@6wind.com>
Reviewed-by: Alain Ritoux <alain.ritoux@6wind.com>
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Acked-by: Donald Sharp <sharpd@cumulusnetworks.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A new API vrf_is_enabled() is defined to check whether a VRF is ready
to use, that is, to allocate resources in that VRF. Currently there's
only one type of resource: socket.
Two new hooks VRF_ENABLE_HOOK/VRF_DISABLE_HOOK are introduced to tell
the user when a VRF gets ready or to be unavailable.
The VRF_ENABLE_HOOK callback is called in the new function vrf_enable(),
which is used to let the VRF be ready to use. Till now, only the default
VRF can be enabled, and we need do nothing to enable the default, except
calling the hook.
The VRF_DISABLE_HOOK callback is called in the new function
vrf_disable(), which is used to let the VRF be unusable. Till now,
it is called only when the VRF is to be deleted.
A new utility vrf_socket() is defined to provide a socket in a given
VRF to the user.
Till now before introducing a way of VRF realization, only the default
VRF is enabled since its birth, and vrf_socket() creates socket for
only the default VRF.
This patch defines the framework of the VRF APIs. The way they serve
the users is:
- vrf_is_enabled() is used to tell the user whether a VRF is usable;
- users are informed by the VRF_ENABLE_HOOK that a VRF gets usable;
they can allocate resources after that;
- users are informed by the VRF_DISABLE_HOOK that a VRF is to be
unavailable, and they must release the resources instantly;
- vrf_socket() is used to provide a socket in a given VRF.
Signed-off-by: Feng Lu <lu.feng@6wind.com>
Reviewed-by: Alain Ritoux <alain.ritoux@6wind.com>
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Acked-by: Vincent JARDIN <vincent.jardin@6wind.com>
Signed-off-by: David Lamparter <equinox@opensourcerouting.org>
|