summaryrefslogtreecommitdiffstats
path: root/lib/avl.c
blob: 33aae063f54fd9ca8b5813ec376affe2e8fc7b6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
/* Generic AVL tree structure -- functions.
 * Copyright (C) 2009 Chris Hall (GMCH), Highwayman
 *
 * This file is part of GNU Zebra.
 *
 * GNU Zebra is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2, or (at your option) any
 * later version.
 *
 * GNU Zebra is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Zebra; see the file COPYING.  If not, write to the Free
 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include "misc.h"
#include "avl.h"
#include "memory.h"

/*==============================================================================
 * This implementation of AVL trees ...
 *
 * Note: lg N is log base 2 of N.
 *
 * Perfectly balanced binary tree will give a maximum height of ceiling(lg N),
 * and an average path length of ~ lg N - 1.  So 500,000 nodes give a tree of
 * maximum height 19, and an average path length of ~18.  (The path length
 * being the number of comparisons required to find a given value, and the
 * average being the sum of comparisons to find all all nodes, divided by the
 * number of nodes.)
 *
 * The AVL tree will give a maximum height of 1.4405 lg N+2.  Building a tree
 * from a sorted list (forwards or backwards) seems to produce a *perfectly*
 * balanced tree !
 *
 * Experiments with AVL tree, using random keys, give results similar to
 * this:
 *
 */

/*==============================================================================
 * Initialisation, allocation, reset etc.
 */

/*------------------------------------------------------------------------------
 * Initialize AVL tree -- allocating if required.
 *
 * Returns the AVL tree which has been initialised.
 */
extern avl_tree
avl_tree_init_new(avl_tree tree, avl_new_func* new, avl_cmp_func* cmp,
                                                                    uint offset)
{
  if (tree == NULL)
    tree = XCALLOC(MTYPE_RB_TREE, sizeof(avl_tree_t)) ;
  else
    memset(tree, 0, sizeof(avl_tree_t)) ;

  /* Zeroising the structure has set:
   *
   *   root        -- NULL, empty tree
   *
   *   node_count  -- 0, no nodes, yet
   *
   *   offset      -- 0,    set below
   *
   *   linked      -- 0 => avl_unlinked
   *   height      -- 0
   *
   *   base        -- NULL, no nodes linked
   *
   *   cmp         -- NULL, set below
   *   new         -- NULL, set below
   */
  confirm(avl_unlinked == 0) ;

  tree->cmp    = cmp ;
  tree->new    = new ;
  tree->offset = offset ;

  return tree ;
} ;

/*------------------------------------------------------------------------------
 * Ream out given AVL tree -- freeing structure if required.
 *
 * Removes each entry in the tree and returns same, in some order, for the
 * caller to deal with.
 *
 * Returns:  next value to deal with -- NULL if tree is empty.
 *
 * If does not free the structure, it retains the parameters set when the tree
 * was initialised -- so tree can be reused without reinitialising it.
 *
 * NB: once started, this process MUST be completed.
 */
extern avl_value
avl_tree_ream(avl_tree tree, free_keep_b free_structure)
{
  avl_node next ;

  if (tree == NULL)
    return NULL ;               /* easy if no tree !    */

  if (tree->linked != avl_reaming)
    avl_tree_link(tree, avl_reaming) ;

  next = dsl_pop(&next, tree->base, next) ;

  if (next == NULL)
    avl_tree_reset(tree, free_structure) ;

  return next ;
} ;

/*------------------------------------------------------------------------------
 * Reset given AVL tree -- freeing structure if required.
 *
 * Returns:  NULL if frees structure, otherwise returns reset structure.
 *
 * If does not free the structure, it retains the parameters set when the tree
 * was initialised -- so tree can be reused without reinitialising it.
 *
 * This is pretty trivial because takes no responsibility for the data in which
 * the 'avl_node's are embedded -- so can discard the tree structure, or simply
 * set the root NULL, and the count to zero.
 *
 * NB: it is the caller's responsibility to release any tree item values
 *     *before* doing this.
 */
extern avl_tree
avl_tree_reset(avl_tree tree, free_keep_b free_structure)
{
  confirm(free_it) ;    /* free_it == true      */

  if (tree == NULL)
    return NULL ;               /* easy if no tree !    */

  if (free_structure)
    XFREE(MTYPE_RB_TREE, tree) ; /* sets tree = NULL      */
  else
    {
      tree->root       = NULL ;
      tree->node_count = 0 ;
      tree->linked     = avl_unlinked ;
      dsl_init(tree->base) ;
    } ;

  return tree ;
} ;

/*==============================================================================
 * AVL lookup, lookup-add and delete.
 */
static inline void avl_set_tos_pointer(avl_tree tree, const avl_stack_t* stack,
                                                                avl_node node) ;
static avl_node avl_rebalance_left(avl_node b) ;
static avl_node avl_rebalance_right(avl_node d) ;
static avl_node avl_rebalance_centre(avl_node b, avl_node c, avl_node d) ;

static uint avl_tree_check(avl_tree tree) ;

/*------------------------------------------------------------------------------
 * Lookup item in the red-black tree -- does NOT add if not found.
 *
 * Returns:  address of item found
 *       or: NULL if not found
 */
extern avl_value
avl_lookup(avl_tree tree, avl_key_c key)
{
  avl_node  node ;

  node = tree->root ;
  while (node != NULL)
    {
      avl_value  value ;
      int cmp ;

      value = avl_get_value(tree, node) ;
      cmp   = tree->cmp(key, value) ;

      if (cmp == 0)
        return value ;          /* FOUND                        */

      if (cmp < 0)              /* key < node's key             */
        node = node->child[avl_left] ;
      else
        node = node->child[avl_right] ;
    } ;

  return NULL ;
} ;

/*------------------------------------------------------------------------------
 * Lookup item in the AVL tree, and add if not there.
 *
 * Returns:  address of item found or added
 *
 * Sets:     *add false/true <=> found/added
 *
 * Uses the avl_create_func() to create the entry to insert from the given key.
 */
extern avl_value
avl_lookup_add(avl_tree tree, avl_key_c key, bool* add)
{
  avl_stack_t stack ;
  avl_value value ;
  avl_node  node ;
  avl_node* cp ;

  if (avl_debug || qdebug)
    memset(&stack, 0, sizeof(avl_stack_t)) ;

  /* Go down tree.
   */
  stack.sp = stack.empty ;
  cp = &tree->root ;
  while (1)
    {
      int cmp ;

      node = *cp ;

      if (node == NULL)
        break ;                 /* Not found -- must insert     */

      value = avl_get_value(tree, node) ;
      cmp   = tree->cmp(key, value) ;

      if (cmp == 0)
        {
          *add = false ;        /* Have not had to add          */
          return value ;        /* FOUND -- easy !!             */
        } ;

      stack.sp->node = node ;

      if (cmp < 0)              /* key < node's key             */
        {
          stack.sp->dir = avl_left ;
          cp = &node->child[avl_left] ;
        }
      else
        {
          stack.sp->dir = avl_right ;
          cp = &node->child[avl_right] ;
        } ;

      ++stack.sp ;

      qassert((stack.sp > stack.empty) && (stack.sp <= stack.full));
    } ;

  /* Create value and insert.
   *
   * When we emerge from the down tree loop we have:
   *
   *   cp -> points to empty pointer to the child to come.
   */
  value = tree->new(key) ;      /* make (minimal) value         */
  node  = avl_get_node(tree, value) ;

  node->child[avl_left]  = NULL ;
  node->child[avl_right] = NULL ;
  node->next             = NULL ;       /* tidy */
  node->bal = 0 ;

  *cp = node ;                  /* insert                       */

  /* When we emerge from the down tree loop we have:
   *
   *   sp - 1 -> node which will be parent, and whether left/right
   *
   *   but if tree is empty, then stack will be empty.
   *
   * Proceed up the stack, rebalancing as required.
   */
  while (stack.sp != stack.empty)
    {
      int delta ;
      int bal ;

      --stack.sp ;                      /* pop                  */
      qassert(stack.sp >= stack.empty) ;

      node  = stack.sp->node ;
      delta = (stack.sp->dir == avl_left) ? -1 : +1 ;

      bal = node->bal ;
      qassert((bal >= -1) && (bal <= +1)) ;

      /* If the old balance == 0:
       *
       *   new balance = delta.
       *
       *   the change has tipped the node, increasing the height, which
       *   must be propagated up the tree.
       *
       * If the new balance == 0:
       *
       *   the change has rebalanced the node, so height has not changed,
       *   so can stop now.
       *
       * Otherwise:
       *
       *   the change has unbalanced the node, in the delta direction, must
       *   now rebalance and if that succeeds, propagate up the tree, otherwise
       *   stop.
       */
      if (bal == 0)
        {
          node->bal = delta ;
          continue ;            /* tipped => height increased           */
        } ;

      bal += delta ;

      if (bal == 0)
        {
          node->bal = bal ;
          break ;               /* rebalanced => height unchanged       */
        } ;

      /* Must now rebalance and then update parent down pointer.
       */
      if (node->bal < 0)
        node = avl_rebalance_right(node) ;
      else
        node = avl_rebalance_left(node) ;

      avl_set_tos_pointer(tree, &stack, node) ;

      qassert(node->bal == 0) ;
      break ;                   /* rebalanced => height unchanged       */
    } ;

  if (avl_debug)
    avl_tree_check(tree) ;      /* check the balance            */

  /* Count in the new node and return its value.                        */

  ++tree->node_count ;
  tree->linked = avl_unlinked ; /* no longer complete           */

  *add = true ;                 /* we have added                */
  return value ;
} ;

/*------------------------------------------------------------------------------
 * Delete item from the red-black tree, if finds it.
 *
 * Returns:  address of item deleted
 *       or: NULL if not found.
 */
extern avl_value
avl_delete(avl_tree tree, avl_key_c key)
{
  avl_stack_t stack ;
  avl_value value ;
  avl_node  node ;
  avl_node  down ;
  avl_node* cp ;

  if (qdebug || avl_debug)
    memset(&stack, 0, sizeof(avl_stack_t)) ;

  /* Go down tree, looking for the node to be deleted.
   */
  stack.sp = stack.empty ;
  cp = &tree->root ;
  while (1)
    {
      int cmp ;

      node = *cp ;

      if (node == NULL)
        return NULL ;                   /* quit if not found    */

      value = avl_get_value(tree, node) ;
      cmp   = tree->cmp(key, value) ;

      if (cmp == 0)
        break ;                         /* found node to delete */

      stack.sp->node = node ;

      if (cmp < 0)                      /* key < node's key     */
        {
          stack.sp->dir = avl_left ;
          cp = &node->child[avl_left] ;
        }
      else
        {
          stack.sp->dir = avl_right ;
          cp = &node->child[avl_right] ;
        } ;

      ++stack.sp ;

      qassert((stack.sp > stack.empty) && (stack.sp <= stack.full));
    } ;

  /* When we emerge from the down tree loop we have found the node to be
   * deleted:
   *
   *   sp - 1 -> node which is the parent, and whether is left/right
   *
   *   cp    == address of parent pointer to node
   *
   *   node  == address of node
   *
   *   value == address of node value -- to be returned
   *
   * If the node has no left child, or no right child, or no children at all,
   * then the node can be deleted directly.
   *
   * If the node has both left and right children, the we need to go down to
   * find the successor of this node -- collecting stuff on the stack as we go.
   * We then "delete" the successor -- moving it to replace the node to be
   * really deleted.
   */
  down = node->child[avl_right] ;
  if ((down == NULL) || (node->child[avl_left] == NULL))
    {
      /* Node to be deleted has no right child or no left child, or no
       * children at all.
       *
       * Deletion is straightforward -- point parent at the child, if any.
       *
       *   down == right child.
       *   cp   == pointer to parent's pointer to the node
       */
      if (down == NULL)
        {
          /* No right child, go left.
           */
          down = node->child[avl_left] ;

          if (down == NULL)
            {
              /* No left child -- we are deleting a leaf.       */
              qassert(node->bal == 0) ;
            }
          else
            {
              /* Left child must be a leaf.                     */
              qassert(node->bal == -1) ;
              qassert(down->bal ==  0) ;
              qassert( (down->child[avl_left]  == NULL) &&
                       (down->child[avl_right] == NULL) ) ;
            }
        }
      else
        {
          /* Have right child, but no left.
           *
           * The right child must be a leaf.
           */
          qassert(node->bal == +1) ;
          qassert(down->bal ==  0) ;
          qassert( (down->child[avl_left]  == NULL) &&
                   (down->child[avl_right] == NULL) ) ;
        } ;
    }
  else
    {
      /* Node to be deleted has both left and right children.
       *
       * Go find the successor and move it into the place occupied by the
       * node to be deleted.
       *
       *   down == right child.
       *   cp   == pointer to parent's pointer to the node
       *
       * Will then balance on the basis of the removal of the successor.
       */
      avl_node* sp ;
      avl_node* qp ;

      /* Proceed down to find the successor
       */
      sp = &stack.sp->node ;    /* So can fix stack on the way back     */

      stack.sp->node = node ;   /* place self on stack                  */
      stack.sp->dir  = avl_right ;
      ++stack.sp ;
      qassert((stack.sp > stack.empty) && (stack.sp <= stack.full)) ;

      qp = &node->child[avl_right] ;
      while (1)
        {
          avl_node* dp ;

          dp = &down->child[avl_left] ;
          if (*dp == NULL)
            break ;                     /* down is the successor        */

          stack.sp->node = down ;       /* place on stack               */
          stack.sp->dir  = avl_left ;
          ++stack.sp ;
          qassert((stack.sp > stack.empty) && (stack.sp <= stack.full)) ;

          down = *dp ;
          qp = dp ;
        } ;

      /* Remove the successor, which has no left children.
       *
       * NB: does this before copying the contents of the node being deleted.
       *
       *     So, if the successor is immediately to the right of the node
       *     being deleted, then that is updated, first.
       */
      *qp = down->child[avl_right] ;

      /* Transfer the successor, so that it occupies the place of the
       * node to actually be deleted.
       *
       * For this purpose we have kept, for the node to be deleted:
       *
       *   cp = pointer to the parent's child pointer
       *
       *   sp = pointer to its stack entry
       *
       * So that the node to be deleted can be replaced by the node to be
       * kept.
       */
      *down = *node ;           /* replace contents of node to be kept  */
      *sp = down ;              /* stack entry must point here, too     */
    } ;

  /* To delete the node we now update the pointer in the parent to point at
   * the selected node down from the node to delete.
   */
  *cp = down ;

  /* Have deleted the node.  Now need to rebalance, as required.
   *
   * We have:
   *
   *   sp - 1 -> node which as the parent of the node we just deleted, and
   *             whether just deleted left or right child.
   *
   *   but if tree is now empty, then stack will be empty.
   */
  while (stack.sp != stack.empty)
    {
      int delta ;
      int bal ;

      --stack.sp ;                      /* pop                  */
      qassert(stack.sp >= stack.empty) ;

      node  = stack.sp->node ;
      delta = (stack.sp->dir == avl_left) ? +1 : -1 ;

      bal = node->bal ;
      qassert((bal >= -1) && (bal <= +1)) ;

      /* If the old balance == 0:
       *
       *   new balance = delta.
       *
       *   the change has tipped the node, so height has not changed,
       *   so can stop now.
       *
       * If the new balance == 0:
       *
       *   the change has rebalanced the node, reducing the height, which
       *   must be propagated up the tree.
       *
       * Otherwise:
       *
       *   the change has unbalanced the node, in the delta direction, must
       *   now rebalance and if that succeeds, propagate up the tree, otherwise
       *   stop.
       */
      if (bal == 0)
        {
          node->bal = delta ;
          break ;               /* tipped => no height change   */
        } ;

      bal += delta ;

      if (bal == 0)
        {
          node->bal = bal ;
          continue ;            /* rebalanced => height reduced */
        } ;

      /* Must now rebalance and then update parent down pointer.
       */
      if (delta < 0)
        node = avl_rebalance_right(node) ;
      else
        node = avl_rebalance_left(node) ;

      avl_set_tos_pointer(tree, &stack, node) ;

      if (node->bal != 0)
        break ;
    } ;

  if (avl_debug)
    avl_tree_check(tree) ;      /* check the balance            */

  /* Count off the deleted node and return its value.                   */

  --tree->node_count ;
  tree->linked = avl_unlinked ; /* no longer complete           */

  return value ;
} ;

/*------------------------------------------------------------------------------
 * Set the
 */
static inline void
avl_set_tos_pointer(avl_tree tree, const avl_stack_t* stack, avl_node node)
{
  if (stack->sp == stack->empty)
    tree->root = node ;
  else
    (stack->sp-1)->node->child[(stack->sp-1)->dir] = node ;
} ;

/*------------------------------------------------------------------------------
 * Rebalance AVL tree, by rotating LEFTWARDS -- RL/RRL
 *
 * RL -- Rotate LEFT -- two cases:
 *
 *   Case B:    +2                RL:           -1 <--
 *          ____b____                       ____d____
 *         /         \0 <<--         --> +1/         \
 *        a          _d_                 _b_          e
 *                  /   \               /   \
 *                 c     e             a     c
 *
 *   Case X:    +2                RL:           -1 <--
 *          ____b____                       ____d____
 *         /         \+1 <<--        --> +1/         \
 *        a          _d_                  _b_         e
 *                  /   \                /   \
 *                 c     e              a     c
 *
 * RRL -- Rotate Right and then LEFT -- three cases:
 *
 *   Case L:    +2                RRL:          0 <--
 *          ____b____                       ____c____
 *         /         \-1 <<--         --> 0/         \+1 <--
 *        a          _d_                 _b_        _d_
 *           -->> -1/   \               /   \      /   \
 *                 c     e             a     x    y     e
 *                / \
 *               x   y
 *
 *   Case 0:    +2                RRL:          0 <--
 *          ____b____                       ____c____
 *         /         \-1 <<--         --> 0/         \0 <--
 *        a          _d_                 _b_         _d_
 *            -->> 0/   \               /   \       /   \
 *                 c     e             a     x     y     e
 *                / \
 *               x   y
 *
 *   Case R:    +2                RRL:          0 <--
 *          ____b____                       ____c____
 *         /         \-1 <<--        --> -1/         \0 <--
 *        a          _d_                 _b_         _d_
 *           -->> +1/   \               /   \       /   \
 *                 c     e             a     x     y     e
 *                / \
 *               x   y
 *
 * Note that case 'B' does not occur in insertion.
 *
 * Note that we don't really care that 'b' is nominally '+2', and we don't
 * actually set that, so don't need to be able to represent it.
 */
static avl_node
avl_rebalance_left(avl_node b)
{
  avl_node  d ;
  avl_node  c ;
  int bal ;

  qassert(b->bal > 0) ;
  qassert(b->child[avl_right] != NULL) ;

  d = b->child[avl_right] ;     /* RIGHT child                  */
  c = d->child[avl_left] ;      /* RIGHT child's LEFT child     */

  bal = d->bal ;

  if (bal >= 0)
    {
      /* RL: single rotate LEFT
       */
      qassert(bal <= +1) ;

      b->child[avl_right] = c ;
      d->child[avl_left]  = b ;

      bal -= 1 ;                /* case: 'B'  0 -> -1   */
                                /* case: 'X' +1 ->  0   */

      b->bal = - bal ;          /* case: 'B' -> +1      */
                                /* case: 'X' ->  0      */
      d->bal =   bal ;          /* case: 'B' -> -1      */
                                /* case: 'X' ->  0      */

      return d ;            /* return the rotated up node   */
    }
  else
    {
      /* RRL: double rotate RIGHT then LEFT.
       */
      qassert(bal == -1) ;

      return avl_rebalance_centre(b, c, d) ;
    } ;
} ;

/*------------------------------------------------------------------------------
 * Rebalance AVL tree, by rotating RIGHTWARDS -- RR/RLR
 *
 * RR -- Rotate RIGHT -- two cases:
 *
 *   Case B:       -2                RR:           +1 <--
 *             ____d____                       ____b____
 *      -->> 0/         \                     /         \-1 <--
 *          _b_          e                   a          _d_
 *         /   \                                       /   \
 *        a     c                                     c     e
 *
 *   Case X:       -2                RR:           0 <--
 *             ____d____                       ____b____
 *     -->> -1/         \                     /         \0 <--
 *          _b_          e                   a          _d_
 *         /   \                                       /   \
 *        a     c                                     c     e
 *
 *
 * RLR -- Rotate Left and then RIGHT -- three cases:
 *
 *   Case L:       -2                RLR:          0 <--
 *             ____d____                       ____c____
 *     -->> +1/         \                --> 0/         \+1 <--
 *          _b_          e                  _b_        _d_
 *         /   \-1 <<--                    /   \      /   \
 *        a     c                         a     x    y     e
 *             / \
 *            x   y
 *
 *   Case 0:       -2                RLR:          0 <--
 *             ____d____                       ____c____
 *     -->> +1/         \                --> 0/         \0 <--
 *          _b_          e                  _b_        _d_
 *         /   \0 <<--                     /   \      /   \
 *        a     c                         a     x    y     e
 *             / \
 *            x   y
 *
 *   Case R:       -2                RLR:          0 <--
 *             ____d____                       ____c____
 *     -->> +1/         \               --> -1/         \0 <--
 *          _b_          e                  _b_        _d_
 *         /   \+1 <<--                    /   \      /   \
 *        a     c                         a     x    y     e
 *             / \
 *            x   y
 *
 * Note that case 'B' does not occur in insertion.
 *
 * Note that we don't really care that 'd' is nominally '-2', and we don't
 * actually set that, so don't need to be able to represent it.
 */
static avl_node
avl_rebalance_right(avl_node d)
{
  avl_node  b ;
  avl_node  c ;
  int bal ;

  qassert(d->bal < 0) ;
  qassert(d->child[avl_left] != NULL) ;

  b = d->child[avl_left] ;      /* LEFT child                   */
  c = b->child[avl_right] ;     /* LEFT child's RIGHT child     */

  bal = b->bal ;

  if (bal <= 0)
    {
      /* RR: single rotate RIGHT
       */
      qassert(bal >= -1) ;

      b->child[avl_right] = d ;
      d->child[avl_left]  = c ;

      bal += 1 ;                /* case: 'B'  0 -> +1   */
                                /* case: 'X' -1 ->  0   */

      b->bal =   bal ;          /* case: 'B' -> +1      */
                                /* case: 'X' ->  0      */
      d->bal = - bal ;          /* case: 'B' -> -1      */
                                /* case: 'X' ->  0      */

      return b ;            /* return the rotated up node   */
    }
  else
    {
      /* RLR: double rotate LEFT then RIGHT.
       */
     qassert(bal == +1) ;

     return avl_rebalance_centre(b, c, d) ;
    } ;
} ;

/*------------------------------------------------------------------------------
 * Rebalance AVL tree -- double rotation.
 */
static avl_node
avl_rebalance_centre(avl_node b, avl_node c, avl_node d)
{
  int bal ;

  qassert(c != NULL) ;

  bal = c->bal ;                /* -1 => case: 'L'      */
                                /*  0 => case: '0'      */
                                /* +1 => case: 'R'      */
  qassert((bal >= -1) && (bal <= +1)) ;

  b->child[avl_right] = c->child[avl_left] ;
  d->child[avl_left]  = c->child[avl_right] ;

  c->child[avl_left]  = b ;
  c->child[avl_right] = d ;

  b->bal = (bal > 0) ? -1 : 0 ;
  c->bal = 0 ;
  d->bal = (bal < 0) ? +1 : 0 ;

  return c ;
} ;

/*==============================================================================
 * Tree linking
 */
static void avl_link_in_order(avl_tree tree, avl_node node) ;
static void avl_link_depth_first(avl_tree tree, avl_node node, uint level) ;
static void avl_link_breadth_first(avl_tree tree, avl_node node, uint level) ;
static void avl_link_reverse_order(avl_tree tree, avl_node node) ;

/*------------------------------------------------------------------------------
 * Link list in the required order, and return first value in that order.
 *
 * This is debounced if is already in the required order.
 *
 * Inserting or deleting nodes clears the trees link state, so a subsequent
 * link call will remake the required list.
 *
 * NB: any insertions made after the linkage is made will not affect the
 *     linkage, but will not be included in it.
 *
 *     Any deletions made after the linkage may or may not affect it.  However,
 *     while walking the linked list, can delete the current value, and
 *     continue.
 *
 * NB: linking depth_first or breadth_first sets the level on every node, and
 *     sets the height on the tree.  Any change to the tree may invalidate that.
 */
extern avl_value
avl_tree_link(avl_tree tree, avl_link_t how)
{
  avl_node node ;

  if (how != tree->linked)
    {
      dsl_init(tree->base) ;
      tree->linked = how ;
      tree->height = 0 ;

      switch (how)
        {
          default:
            qassert(false) ;
            fall_through ;

          case avl_unlinked:
            break ;

          case avl_in_order:
          case avl_reaming:
            avl_link_in_order(tree, tree->root) ;
            break ;

          case avl_depth_first:
            avl_link_depth_first(tree, tree->root, 0) ;
            break ;

          case avl_breadth_first:
            avl_link_breadth_first(tree, tree->root, 0) ;
            break ;

          case avl_reverse_order:
            avl_link_reverse_order(tree, tree->root) ;
            break ;
        } ;
    } ;

  node = dsl_head(tree->base) ;

  return (node != NULL) ? avl_get_value(tree, node) : NULL ;
} ;

/*------------------------------------------------------------------------------
 * Add given subtree to tree list, in-order.
 */
static void
avl_link_in_order(avl_tree tree, avl_node node)
{
  if (node != NULL)
    {
      avl_link_in_order(tree, node->child[avl_left]) ;
      dsl_append(tree->base, node, next) ;
      avl_link_in_order(tree, node->child[avl_right]) ;
    } ;
} ;

/*------------------------------------------------------------------------------
 * Add given subtree to tree list, depth first.
 */
static void
avl_link_depth_first(avl_tree tree, avl_node node, uint level)
{
  if (node != NULL)
    {
      avl_link_depth_first(tree, node->child[avl_left], level + 1) ;
      avl_link_depth_first(tree, node->child[avl_right], level + 1) ;
      dsl_append(tree->base, node, next) ;
      node->level = level ;
    }
  else
    {
      if (level > tree->height) /* If this is leaf, then level is its   */
        tree->height = level ;  /* height                               */
    } ;
} ;

/*------------------------------------------------------------------------------
 * Add given subtree to tree list, processing each level in turn.
 */
static void
avl_link_breadth_first(avl_tree tree, avl_node node, uint level)
{
  struct dl_base_pair(avl_node) queue ;
  uint height ;

  dsl_init(queue) ;
  height = 0 ;

  if (node != NULL)
    node->level = 0 ;           /* root is level 0      */

  while (node != NULL)
    {
      avl_node child ;

      level = node->level + 1 ;

      if (level > height)       /* If this is leaf, then level is its   */
        height = level ;        /* height                               */

      dsl_append(tree->base, node, next) ;

      if ((child = node->child[avl_left]) != NULL)
        {
          dsl_append(queue, child, next) ;
          child->level = level ;
        } ;

      if ((child = node->child[avl_right]) != NULL)
        {
          dsl_append(queue, child, next) ;
          child->level = level ;
        } ;

      node = dsl_pop(&node, queue, next) ;
    } ;

  tree->height = height ;
} ;

/*------------------------------------------------------------------------------
 * Add given subtree to tree list in reverse order.
 */
static void
avl_link_reverse_order(avl_tree tree, avl_node node)
{
  if (node != NULL)
    {
      avl_link_in_order(tree, node->child[avl_right]) ;
      dsl_append(tree->base, node, next) ;
      avl_link_in_order(tree, node->child[avl_left]) ;
    } ;
} ;

/*==============================================================================
 * Diagnostics
 */

static uint avl_get_node_height(avl_node node) ;

/*------------------------------------------------------------------------------
 * Get the height of the given tree.
 *
 * Returns the height of the longest branch.
 *
 * Returns zero if tree is empty.
 *
 * NB: if avl_debug, checks the balance of every node.
 */
static uint
avl_tree_check(avl_tree tree)
{
  return avl_get_node_height(tree->root) ;
} ;

/*------------------------------------------------------------------------------
 * Get the height of the given node.
 *
 * Gets the heights of the left and right sub-trees, and returns the max of
 * those + 1.
 *
 * If avl_debug, checks the balance on every node against the left and right
 * tree heights.
 *
 * Returns zero if node is NULL.
 */
static uint
avl_get_node_height(avl_node node)
{
  uint hl, hr ;

  if (node == NULL)
    return 0 ;

  hl = avl_get_node_height(node->child[avl_left]) ;
  hr = avl_get_node_height(node->child[avl_right]) ;

  if (avl_debug)
    assert(node->bal == ((int)hr - (int)hl)) ;

  return ((hl >= hr) ? hl : hr) + 1 ;
} ;

/*==============================================================================
 * Tree walking -- replaced by tree linking.
 */

#if 0

/*------------------------------------------------------------------------------
 * Start a tree walk.
 *
 * Returns:  number of nodes in the tree
 *
 * Note that if the tree is NULL, will set up a walk that will stop immediately.
 */
extern uint
avl_tree_walk_start(avl_tree tree, avl_walker walk)
{
  memset(walk, 0, sizeof(avl_walker_t)) ;

  /* Zeroising sets:
   *
   *   tree        -- NULL, set below
   *
   *   count       -- 0   => walk just started
   *
   *   level       -- 0      ) see avl_tree_walk_level_next
   *   more        -- false  )
   *
   *   stack       -- all zero.  Set by "next" when count == 0 and root != NULL
   */
  walk->tree   = tree ;

  return (tree != NULL) ? tree->node_count : 0 ;
} ;

/*------------------------------------------------------------------------------
 * Step to next in-order node in given walk
 */
extern avl_value
avl_tree_walk_next(avl_walker walk)
{
  avl_node node, down ;

  if (walk->count == 0)
    {
      /* We are at the start of the process, which is the end if the tree
       * is empty.
       *
       * Need to head down to the left-most child.
       */
      if (walk->tree == NULL)
        return NULL ;

      node = walk->tree->root ;

      if (node == NULL)
        return NULL ;

      walk->stack.sp = walk->stack.empty ;
    }
  else
    {
      /* We are somewhere in the tree, top of the stack contains the node
       * whose value we just returned.  So:
       *
       *   a. if there is a right child:
       *
       *      step right and then head leftwards and return the left-most
       *      available (or self if none).
       *
       *   b. if no right child:
       *
       *      if this is the root, we are finished.
       *
       *      if this is the left child of the parent, return to parent and
       *      return its value.
       *
       *      if this is the right child of the parent, return to the parent,
       *      repeat....
       */
      node = walk->stack.sp->node ;
      down = node->child[avl_right] ;

      if (down != NULL)
        {
          ++walk->stack.sp ;            /* push current                 */
          node = down ;
        }
      else
        {
          while (1)
            {
              if (node == walk->tree->root)
                {
                  /* We have returned to the root -- we are done.       */
                  qassert(walk->stack.sp == walk->stack.empty) ;
                  return NULL ;
                } ;

              qassert(walk->stack.sp > walk->stack.empty) ;

              if (walk->stack.sp->dir == avl_left)
                {
                  /* We can step up the left-hand path, and return the
                   * parent's value.
                   */
                  --walk->stack.sp ;

                  ++walk->count ;
                  return avl_get_value(walk->tree, walk->stack.sp->node) ;
                } ;

              /* We step up the right-hand path, and keep going, depending
               * on how we arrived at the parent node.
               */
              --walk->stack.sp ;
              node = walk->stack.sp->node ;
            } ;
        } ;
    } ;

  /* If we get here we have just stepped rightwards to the current
   * node.
   *
   * Now head as far to the left as we can go.
   *
   * Note that the root is depth == 0.
   */
  walk->stack.sp->node = node ;
  walk->stack.sp->dir  = avl_right ;

  while ((down = node->child[avl_left]) != NULL)
    {
      ++walk->stack.sp ;    /* push current         */
      node = down ;

      walk->stack.sp->node = node ;
      walk->stack.sp->dir  = avl_left ;
    } ;

  qassert( (walk->stack.sp >= walk->stack.empty)
        && (walk->stack.sp <= walk->stack.full) ) ;

  ++walk->count ;
  return avl_get_value(walk->tree, node) ;
} ;

/*------------------------------------------------------------------------------
 * Step to next depth-first node in given walk
 */
extern avl_value
avl_tree_walk_depth_next(avl_walker walk)
{
  avl_node node, down ;

  if (walk->count == 0)
    {
      /* We are at the start of the process, which is the end if the tree
       * is empty.
       *
       * Need to head down to the left-most child.
       */

      down = walk->tree->root ;

      if (down == NULL)
        return NULL ;

      walk->stack.sp = walk->stack.empty ;
    }
  else
    {
      /* We are somewhere in the tree, top of the stack contains the node
       * whose value we just returned.  So:
       *
       *   a. if this is the root, we are finished.
       *
       *   b. if this is a left child, return to the parent, and then head
       *      right and down.
       *
       *   c. if this is a right child, return the parent value.
       */
      node = walk->stack.sp->node ;

      if (node == walk->tree->root)
        {
          /* We have returned to the root -- we are done.       */
          qassert(walk->stack.sp == walk->stack.empty) ;
          return NULL ;
        } ;

      node = (walk->stack.sp - 1)->node ;
      down = NULL ;

      if ( (walk->stack.sp->dir == avl_left)
                                  && ((down = node->child[avl_right]) != NULL) )
        ;                       /* Go to the right, and then down       */
      else
        --walk->stack.sp ;      /* pop                                  */
    } ;

  /* If down != NULL, we have just stepped rightwards to that node (or have
   * just started with the root node).  In which case head as far down as
   * we can go.
   *
   * If down == NULL, return the current node.
   *
   * Note that the root is depth == 0.
   */
  if (down != NULL)
    {
      node = down ;

      walk->stack.sp->node = node ;
      walk->stack.sp->dir  = avl_right ;

      while (1)
        {
          avl_dir_t dir ;

          if      ((down = node->child[avl_left]) != NULL)
            dir = avl_left ;
          else if ((down = node->child[avl_right]) != NULL)
            dir = avl_right ;
          else
            break ;

          ++walk->stack.sp ;    /* push current         */
          node = down ;

          walk->stack.sp->node = node ;
          walk->stack.sp->dir  = dir ;
        }
    } ;

  qassert( (walk->stack.sp >= walk->stack.empty)
        && (walk->stack.sp <= walk->stack.full) ) ;

  ++walk->count ;
  return avl_get_value(walk->tree, node) ;
} ;

/*------------------------------------------------------------------------------
 * Step to next level order node in given walk
 */
extern avl_value
avl_tree_walk_level_next(avl_walker walk)
{
  avl_node  node ;

  /* First: if we are at the beginning, place self on root, at proceed
   *        from there.
   *
   * Otherwise, we need to backtrack to find next branch to run down, or
   * restart the process with a new target level.
   */
  if (walk->count == 0)
    {
      /* We are at the start of the process, which is the end if the tree
       * is empty.
       *
       * Need to head down to the left-most child.
       */

      node = walk->tree->root ;

      if (node == NULL)
        return NULL ;

      walk->stack.sp = walk->stack.empty ;

      walk->stack.sp->node = node ;
      walk->stack.sp->dir  = avl_right ;
    }
  else
    {
      uint     level ;

      level = walk->level ;     /* current level == target level !      */
      qassert(avl_tree_walk_depth(walk) == level) ;

      node = walk->stack.sp->node ;

      /* The outer do loop manages the backtracking required when cannot reach
       * the current level along the current branch.
       */
      do
        {
          /* We are somewhere in the tree, top of the stack contains the node
           * whose value we just returned, or where we stopped last time,
           * because failed to reach depth.  So:
           *
           *   a. if we are at the root, and there is more to come, set the
           *      new target level and set off to find it.
           *
           *   b. backtrack.
           *
           *      if was left child of parent, try the right child, otherwise,
           *      go back to (a).
           *
           * The while loop backtracks until:
           *
           *   * hit root and either increases the level, or stops.
           *
           *     Note that we cope with the case of having just returned the
           *     root node.
           *
           *   * are able to step rightwards, from a node that we backtrack to.
           */
          while (1)
            {
              if (node == walk->tree->root)
                {
                  /* We have returned to the root -- we are done.       */
                  qassert(walk->stack.sp == walk->stack.empty) ;
                  qassert(level == 0) ;

                  if (!walk->more)
                    return NULL ;

                  walk->more = false ;
                  ++walk->level ;
                  break ;               /* proceed to find level        */
                }
              else
                {
                  avl_dir_t dir ;
                  avl_node  down ;

                  dir = walk->stack.sp->dir ;

                  --walk->stack.sp ;            /* pop          */
                  --level ;                     /* up a level   */

                  node = walk->stack.sp->node ;

                  if ( (dir == avl_left) &&
                       ((down = node->child[avl_right]) != NULL) )
                    {
                      /* We can step right and down             */
                      node = down ;

                      ++walk->stack.sp ;            /* push         */
                      ++level ;                     /* down a level */

                      break ;           /* proceed to find level        */
                    } ;
                } ;
            } ;

          /* If we get here we have just stepped rightwards to the current
           * node -- or have just started at the root.
           *
           * Now head as far to the down we can go, subject to stopping at the
           * current required level.
           *
           * Note that the root is depth == 0.
           */
          walk->stack.sp->node = node ;
          walk->stack.sp->dir  = avl_right ;

          while (level < walk->level)
            {
              avl_node  down ;
              avl_dir_t dir ;

              if      ((down = node->child[avl_left]) != NULL)
                dir = avl_left ;
              else if ((down = node->child[avl_right]) != NULL)
                dir = avl_right ;
              else
                break ;

              ++level ;
              ++walk->stack.sp ;    /* push current         */
              node = down ;

              walk->stack.sp->node = node ;
              walk->stack.sp->dir  = dir ;
            } ;

        /* This is the end of the outer do loop.
         *
         * If we have reached the required depth, then can exit the loop to
         * return the current node.
         *
         * Otherwise, there is nothing deep enough on the current branch, so
         * loops back to backtrack.
         */
        } while (level < walk->level) ;
    } ;

  /* When we get here we are ready to return the current node.          */
  if ((node->child[avl_left] != NULL) || (node->child[avl_right] != NULL))
    walk->more = true ;

  qassert( (walk->stack.sp >= walk->stack.empty)
        && (walk->stack.sp <= walk->stack.full) ) ;

  ++walk->count ;
  return avl_get_value(walk->tree, node) ;
} ;

/*------------------------------------------------------------------------------
 * How deep in the tree was the last value returned by the walk ?
 *
 * Note that the root is at depth == 0.
 */
extern uint
avl_tree_walk_depth(avl_walker walk)
{
  return (walk->stack.sp - walk->stack.empty) ;
} ;

/*------------------------------------------------------------------------------
 * For avl_tree_walk_level_next walk, what level are we at ?
 *
 * Note that the root is at level == 0.
 */
extern uint
avl_tree_walk_level(avl_walker walk)
{
  return walk->level ;
} ;
#endif