diff options
author | Tobias Brunner <tobias@strongswan.org> | 2017-09-22 15:47:11 +0200 |
---|---|---|
committer | Tobias Brunner <tobias@strongswan.org> | 2017-11-08 16:48:10 +0100 |
commit | 03eda5a82244527b03cf4dc9383709b1669c6caf (patch) | |
tree | 525bf54298fbaf026f2ebcb2878517099ff4bd95 /src | |
parent | a22316520b916723d72c24c0593c344343904acb (diff) | |
download | strongswan-03eda5a82244527b03cf4dc9383709b1669c6caf.tar.bz2 strongswan-03eda5a82244527b03cf4dc9383709b1669c6caf.tar.xz |
openssl: Add functions to determine missing RSA private key parameters
We only need n, e, and d. The parameters for the Chinese remainder
algorithm and even p and q can be determined from these.
Diffstat (limited to 'src')
-rw-r--r-- | src/libstrongswan/plugins/openssl/openssl_rsa_private_key.c | 232 |
1 files changed, 223 insertions, 9 deletions
diff --git a/src/libstrongswan/plugins/openssl/openssl_rsa_private_key.c b/src/libstrongswan/plugins/openssl/openssl_rsa_private_key.c index f2c320f55..234f559fe 100644 --- a/src/libstrongswan/plugins/openssl/openssl_rsa_private_key.c +++ b/src/libstrongswan/plugins/openssl/openssl_rsa_private_key.c @@ -1,5 +1,5 @@ /* - * Copyright (C) 2008-2016 Tobias Brunner + * Copyright (C) 2008-2017 Tobias Brunner * Copyright (C) 2009 Martin Willi * HSR Hochschule fuer Technik Rapperswil * @@ -37,6 +37,7 @@ OPENSSL_KEY_FALLBACK(RSA, key, n, e, d) OPENSSL_KEY_FALLBACK(RSA, factors, p, q) OPENSSL_KEY_FALLBACK(RSA, crt_params, dmp1, dmq1, iqmp) +#define BN_secure_new() BN_new() #endif typedef struct private_openssl_rsa_private_key_t private_openssl_rsa_private_key_t; @@ -400,6 +401,195 @@ private_key_t *openssl_rsa_private_key_create(EVP_PKEY *key, bool engine) return &this->public.key; } +/** + * Recover the primes from n, e and d using the algorithm described in + * Appendix C of NIST SP 800-56B. + */ +static bool calculate_pq(BIGNUM *n, BIGNUM *e, BIGNUM *d, + BIGNUM **p, BIGNUM **q) +{ + BN_CTX *ctx; + BIGNUM *k, *r, *g, *y, *n1, *x; + int i, t, j; + bool success = FALSE; + + ctx = BN_CTX_new(); + if (!ctx) + { + return FALSE; + } + BN_CTX_start(ctx); + k = BN_CTX_get(ctx); + r = BN_CTX_get(ctx); + g = BN_CTX_get(ctx); + y = BN_CTX_get(ctx); + n1 = BN_CTX_get(ctx); + x = BN_CTX_get(ctx); + if (!x) + { + goto error; + } + /* k = (d * e) - 1 */ + if (!BN_mul(k, d, e, ctx) || !BN_sub(k, k, BN_value_one())) + { + goto error; + } + /* k must be even */ + if (BN_is_odd(k)) + { + goto error; + } + /* k = 2^t * r, where r is the largest odd integer dividing k, and t >= 1 */ + if (!BN_copy(r, k)) + { + goto error; + } + for (t = 0; !BN_is_odd(r); t++) + { /* r = r/2 */ + if (!BN_rshift(r, r, 1)) + { + goto error; + } + } + /* we need n-1 below */ + if (!BN_sub(n1, n, BN_value_one())) + { + goto error; + } + for (i = 0; i < 100; i++) + { /* generate random integer g in [0, n-1] */ + if (!BN_pseudo_rand_range(g, n)) + { + goto error; + } + /* y = g^r mod n */ + if (!BN_mod_exp(y, g, r, n, ctx)) + { + goto error; + } + /* try again if y == 1 or y == n-1 */ + if (BN_is_one(y) || BN_cmp(y, n1) == 0) + { + continue; + } + for (j = 0; j < t; j++) + { /* x = y^2 mod n */ + if (!BN_mod_sqr(x, y, n, ctx)) + { + goto error; + } + /* stop if x == 1 */ + if (BN_is_one(x)) + { + goto done; + } + /* retry with new g if x = n-1 */ + if (BN_cmp(x, n1) == 0) + { + break; + } + /* y = x */ + if (!BN_copy(y, x)) + { + goto error; + } + } + } + goto error; + +done: + /* p = gcd(y-1, n) */ + if (!BN_sub(y, y, BN_value_one())) + { + goto error; + } + *p = BN_secure_new(); + if (!BN_gcd(*p, y, n, ctx)) + { + BN_clear_free(*p); + goto error; + } + /* q = n/p */ + *q = BN_secure_new(); + if (!BN_div(*q, NULL, n, *p, ctx)) + { + BN_clear_free(*p); + BN_clear_free(*q); + goto error; + } + success = TRUE; + +error: + BN_CTX_end(ctx); + BN_CTX_free(ctx); + return success; +} + +/** + * Calculates dp = d (mod p-1) or dq = d (mod q-1) for the Chinese remainder + * algorithm. + */ +static BIGNUM *dmodpq1(BIGNUM *d, BIGNUM *pq) +{ + BN_CTX *ctx; + BIGNUM *res = NULL, *pq1; + + ctx = BN_CTX_new(); + if (!ctx) + { + return NULL; + } + BN_CTX_start(ctx); + pq1 = BN_CTX_get(ctx); + /* p|q - 1 */ + if (!BN_sub(pq1, pq, BN_value_one())) + { + goto error; + } + /* d (mod p|q -1) */ + res = BN_secure_new(); + if (!BN_mod(res, d, pq1, ctx)) + { + BN_clear_free(res); + res = NULL; + goto error; + } + +error: + BN_CTX_end(ctx); + BN_CTX_free(ctx); + return res; +} + +/** + * Calculates qinv = q^-1 (mod p) for the Chinese remainder algorithm. + */ +static BIGNUM *qinv(BIGNUM *q, BIGNUM *p) +{ + BN_CTX *ctx; + BIGNUM *res = NULL; + + ctx = BN_CTX_new(); + if (!ctx) + { + return NULL; + } + BN_CTX_start(ctx); + /* q^-1 (mod p) */ + res = BN_secure_new(); + if (!BN_mod_inverse(res, q, p, ctx)) + { + BN_clear_free(res); + res = NULL; + goto error; + } + +error: + BN_CTX_end(ctx); + BN_CTX_free(ctx); + return res; +} + /* * See header */ @@ -458,7 +648,7 @@ openssl_rsa_private_key_t *openssl_rsa_private_key_load(key_type_t type, return &this->public; } } - else if (n.ptr && e.ptr && d.ptr && p.ptr && q.ptr && coeff.ptr) + else if (n.ptr && e.ptr && d.ptr) { BIGNUM *bn_n, *bn_e, *bn_d, *bn_p, *bn_q; BIGNUM *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL; @@ -470,32 +660,56 @@ openssl_rsa_private_key_t *openssl_rsa_private_key_load(key_type_t type, bn_d = BN_bin2bn((const u_char*)d.ptr, d.len, NULL); if (!RSA_set0_key(this->rsa, bn_n, bn_e, bn_d)) { - destroy(this); - return NULL; + goto error; } - bn_p = BN_bin2bn((const u_char*)p.ptr, p.len, NULL); - bn_q = BN_bin2bn((const u_char*)q.ptr, q.len, NULL); + if (p.ptr && q.ptr) + { + bn_p = BN_bin2bn((const u_char*)p.ptr, p.len, NULL); + bn_q = BN_bin2bn((const u_char*)q.ptr, q.len, NULL); + } + else + { + if (!calculate_pq(bn_n, bn_e, bn_d, &bn_p, &bn_q)) + { + goto error; + } + } if (!RSA_set0_factors(this->rsa, bn_p, bn_q)) { - destroy(this); - return NULL; + goto error; } if (exp1.ptr) { dmp1 = BN_bin2bn((const u_char*)exp1.ptr, exp1.len, NULL); } + else + { + dmp1 = dmodpq1(bn_d, bn_p); + } if (exp2.ptr) { dmq1 = BN_bin2bn((const u_char*)exp2.ptr, exp2.len, NULL); } - iqmp = BN_bin2bn((const u_char*)coeff.ptr, coeff.len, NULL); + else + { + dmq1 = dmodpq1(bn_d, bn_q); + } + if (coeff.ptr) + { + iqmp = BN_bin2bn((const u_char*)coeff.ptr, coeff.len, NULL); + } + else + { + iqmp = qinv(bn_q, bn_p); + } if (RSA_set0_crt_params(this->rsa, dmp1, dmq1, iqmp) && RSA_check_key(this->rsa) == 1) { return &this->public; } } +error: destroy(this); return NULL; } |