aboutsummaryrefslogtreecommitdiffstats
path: root/src/libstrongswan/asn1/asn1.c
blob: ec46b165b0ae22bbeae7d407d1f44b4128abc182 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
/*
 * Copyright (C) 2006 Martin Will
 * Copyright (C) 2000-2008 Andreas Steffen
 *
 * Hochschule fuer Technik Rapperswil
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.  See <http://www.fsf.org/copyleft/gpl.txt>.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 */

#include <stdio.h>
#include <string.h>
#include <time.h>
#include <pthread.h>

#include <utils.h>
#include <debug.h>

#include "oid.h"
#include "asn1.h"
#include "asn1_parser.h"

/**
 * some common prefabricated ASN.1 constants
 */
static u_char ASN1_INTEGER_0_str[] = { 0x02, 0x00 };
static u_char ASN1_INTEGER_1_str[] = { 0x02, 0x01, 0x01 };
static u_char ASN1_INTEGER_2_str[] = { 0x02, 0x01, 0x02 };

const chunk_t ASN1_INTEGER_0 = chunk_from_buf(ASN1_INTEGER_0_str);
const chunk_t ASN1_INTEGER_1 = chunk_from_buf(ASN1_INTEGER_1_str);
const chunk_t ASN1_INTEGER_2 = chunk_from_buf(ASN1_INTEGER_2_str);

/**
 * some popular algorithmIdentifiers
 */

static u_char ASN1_md2_id_str[] = {
	0x30, 0x0c,
		  0x06, 0x08,
				0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x02,
		  0x05,0x00,
};

static u_char ASN1_md5_id_str[] = {
	0x30, 0x0C,
		  0x06, 0x08,
				0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05,
		  0x05, 0x00
};

static u_char ASN1_sha1_id_str[] = {
	0x30, 0x09,
		  0x06, 0x05,
				0x2B, 0x0E,0x03, 0x02, 0x1A,
		  0x05, 0x00
};

static u_char ASN1_sha256_id_str[] = {
	0x30, 0x0d,
		  0x06, 0x09,
				0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
		  0x05, 0x00
};

static u_char ASN1_sha384_id_str[] = {
	0x30, 0x0d,
		  0x06, 0x09,
				0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
		  0x05, 0x00
};

static u_char ASN1_sha512_id_str[] = {
	0x30, 0x0d,
		  0x06, 0x09,
				0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
		  0x05,0x00
};

static u_char ASN1_md2WithRSA_id_str[] = {
	0x30, 0x0D,
		  0x06, 0x09,
				0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x02,
		  0x05, 0x00
};

static u_char ASN1_md5WithRSA_id_str[] = {
	0x30, 0x0D,
		  0x06, 0x09,
				0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x04,
		  0x05, 0x00
};

static u_char ASN1_sha1WithRSA_id_str[] = {
	0x30, 0x0D,
		  0x06, 0x09,
				0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x05,
		  0x05, 0x00
};

static u_char ASN1_sha256WithRSA_id_str[] = {
	0x30, 0x0D,
		  0x06, 0x09,
				0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x0B,
		  0x05, 0x00
};

static u_char ASN1_sha384WithRSA_id_str[] = {
	0x30, 0x0D,
		  0x06, 0x09,
				0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x0C,
		  0x05, 0x00
};

static u_char ASN1_sha512WithRSA_id_str[] = {
	0x30, 0x0D,
		  0x06, 0x09,
				0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x0D,
		  0x05, 0x00
};

static u_char ASN1_rsaEncryption_id_str[] = {
	0x30, 0x0D,
		  0x06, 0x09,
				0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01,
		  0x05, 0x00
};

static const chunk_t ASN1_md2_id    = chunk_from_buf(ASN1_md2_id_str);
static const chunk_t ASN1_md5_id    = chunk_from_buf(ASN1_md5_id_str);
static const chunk_t ASN1_sha1_id   = chunk_from_buf(ASN1_sha1_id_str);
static const chunk_t ASN1_sha256_id = chunk_from_buf(ASN1_sha256_id_str);
static const chunk_t ASN1_sha384_id = chunk_from_buf(ASN1_sha384_id_str);
static const chunk_t ASN1_sha512_id = chunk_from_buf(ASN1_sha512_id_str);
static const chunk_t ASN1_rsaEncryption_id = chunk_from_buf(ASN1_rsaEncryption_id_str);
static const chunk_t ASN1_md2WithRSA_id = chunk_from_buf(ASN1_md2WithRSA_id_str);
static const chunk_t ASN1_md5WithRSA_id = chunk_from_buf(ASN1_md5WithRSA_id_str);
static const chunk_t ASN1_sha1WithRSA_id = chunk_from_buf(ASN1_sha1WithRSA_id_str);
static const chunk_t ASN1_sha256WithRSA_id = chunk_from_buf(ASN1_sha256WithRSA_id_str);
static const chunk_t ASN1_sha384WithRSA_id = chunk_from_buf(ASN1_sha384WithRSA_id_str);
static const chunk_t ASN1_sha512WithRSA_id = chunk_from_buf(ASN1_sha512WithRSA_id_str);

/*
 * Defined in header.
 */
chunk_t asn1_algorithmIdentifier(int oid)
{
	switch (oid)
	{
		case OID_RSA_ENCRYPTION:
			return ASN1_rsaEncryption_id;
		case OID_MD2_WITH_RSA:
			return ASN1_md2WithRSA_id;
		case OID_MD5_WITH_RSA:
			return ASN1_md5WithRSA_id;
		case OID_SHA1_WITH_RSA:
			return ASN1_sha1WithRSA_id;
		case OID_SHA256_WITH_RSA:
			return ASN1_sha256WithRSA_id;
		case OID_SHA384_WITH_RSA:
			return ASN1_sha384WithRSA_id;
		case OID_SHA512_WITH_RSA:
			return ASN1_sha512WithRSA_id;
		case OID_MD2:
			return ASN1_md2_id;
		case OID_MD5:
			return ASN1_md5_id;
		case OID_SHA1:
			return ASN1_sha1_id;
		case OID_SHA256:
			return ASN1_sha256_id;
		case OID_SHA384:
			return ASN1_sha384_id;
		case OID_SHA512:
			return ASN1_sha512_id;
		default:
			return chunk_empty;
	}
}

/*
 * Defined in header.
 */
int asn1_known_oid(chunk_t object)
{
	int oid = 0;
	
	while (object.len)
	{
		if (oid_names[oid].octet == *object.ptr)
		{
			if (--object.len == 0 || oid_names[oid].down == 0)
			{
				return oid;          /* found terminal symbol */
			}
			else
			{
				object.ptr++; oid++; /* advance to next hex octet */
			}
		}
		else
		{
			if (oid_names[oid].next)
			{
				oid = oid_names[oid].next;
			}
			else
			{
				return OID_UNKNOWN;
			}
		}
	}
	return -1;
}

/*
 * Defined in header.
 */
chunk_t asn1_build_known_oid(int n)
{
	chunk_t oid;
	int i;
	
	if (n < 0 || n >= OID_MAX)
	{
		return chunk_empty;
	}
	
	i = oid_names[n].level + 1;
	oid = chunk_alloc(2 + i);
	oid.ptr[0] = ASN1_OID;
	oid.ptr[1] = i;
	
	do
	{
		if (oid_names[n].level >= i)
		{
			n--;
			continue;
		}
		oid.ptr[--i + 2] = oid_names[n--].octet;
	}
	while (i > 0);
	
	return oid;
}

/*
 * Defined in header.
 */
size_t asn1_length(chunk_t *blob)
{
	u_char n;
	size_t len;
	
	if (blob->len < 2)
	{
		DBG2("insufficient number of octets to parse ASN.1 length");
		return ASN1_INVALID_LENGTH;
	}
	
	/* read length field, skip tag and length */
	n = blob->ptr[1];
	*blob = chunk_skip(*blob, 2);
	
	if ((n & 0x80) == 0) 
	{	/* single length octet */
		if (n > blob->len)
		{
			DBG2("length is larger than remaining blob size");
			return ASN1_INVALID_LENGTH;
		}
		return n;
	}
	
	/* composite length, determine number of length octets */
	n &= 0x7f;
	
	if (n == 0 || n > blob->len)
	{
		DBG2("number of length octets invalid");
		return ASN1_INVALID_LENGTH;
	}
	
	if (n > sizeof(len))
	{
		DBG2("number of length octets is larger than limit of %d octets", 
			 (int)sizeof(len));
		return ASN1_INVALID_LENGTH;
	}
	
	len = 0;
	
	while (n-- > 0)
	{
		len = 256*len + *blob->ptr++;
		blob->len--;
	}
	if (len > blob->len)
	{
		DBG2("length is larger than remaining blob size");
		return ASN1_INVALID_LENGTH;
	}
	return len;
}

/*
 * See header.
 */
int asn1_unwrap(chunk_t *blob, chunk_t *inner)
{
	chunk_t res;
	u_char len;
	int type;
	
	if (blob->len < 2)
	{
		return ASN1_INVALID;
	}
	type = blob->ptr[0];
	len = blob->ptr[1];
	*blob = chunk_skip(*blob, 2);
	
	if ((len & 0x80) == 0)
	{	/* single length octet */
		res.len = len;
	}
	else
	{	/* composite length, determine number of length octets */
		len &= 0x7f;
		if (len == 0 || len > sizeof(res.len))
		{
			return ASN1_INVALID;
		}
		res.len = 0;
		while (len-- > 0)
		{
			res.len = 256 * res.len + blob->ptr[0];
			*blob = chunk_skip(*blob, 1);
		}
	}
	if (res.len > blob->len)
	{
		return ASN1_INVALID;
	}
	res.ptr = blob->ptr;
	*blob = chunk_skip(*blob, res.len);
	/* updating inner not before we are finished allows a caller to pass
	 * blob = inner */
	*inner = res;
	return type;
}

#define TIME_MAX	0x7fffffff

static const int days[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
static const int tm_leap_1970 = 477;

/**
 * Converts ASN.1 UTCTIME or GENERALIZEDTIME into calender time
 */
time_t asn1_to_time(const chunk_t *utctime, asn1_t type)
{
	int tm_year, tm_mon, tm_day, tm_days, tm_hour, tm_min, tm_sec;
	int tm_leap_4, tm_leap_100, tm_leap_400, tm_leap;
	int tz_hour, tz_min, tz_offset;
	time_t tm_secs;
	u_char *eot = NULL;
	
	if ((eot = memchr(utctime->ptr, 'Z', utctime->len)) != NULL)
	{
		tz_offset = 0; /* Zulu time with a zero time zone offset */
	}
	else if ((eot = memchr(utctime->ptr, '+', utctime->len)) != NULL)
	{
		if (sscanf(eot+1, "%2d%2d", &tz_hour, &tz_min) != 2)
		{
			return 0; /* error in positive timezone offset format */
		}
		tz_offset = 3600*tz_hour + 60*tz_min;  /* positive time zone offset */
	}
	else if ((eot = memchr(utctime->ptr, '-', utctime->len)) != NULL)
	{
		if (sscanf(eot+1, "%2d%2d", &tz_hour, &tz_min) != 2)
		{
			return 0; /* error in negative timezone offset format */
		}
		tz_offset = -3600*tz_hour - 60*tz_min;  /* negative time zone offset */
	}
	else
	{
		return 0; /* error in time format */
	}
	
	/* parse ASN.1 time string */
	{
		const char* format = (type == ASN1_UTCTIME)? "%2d%2d%2d%2d%2d":
													 "%4d%2d%2d%2d%2d";
	
		if (sscanf(utctime->ptr, format, &tm_year, &tm_mon, &tm_day,
										 &tm_hour, &tm_min) != 5)
		{
			return 0; /* error in [yy]yymmddhhmm time format */
		}
	}
	
	/* is there a seconds field? */
	if ((eot - utctime->ptr) == ((type == ASN1_UTCTIME)?12:14))
	{
		if (sscanf(eot-2, "%2d", &tm_sec) != 1)
		{
			return 0; /* error in ss seconds field format */
		}
	}
	else
	{
		tm_sec = 0;
	}
	
	/* representation of two-digit years */
	if (type == ASN1_UTCTIME)
	{
		tm_year += (tm_year < 50) ? 2000 : 1900;
	}
	
	/* prevent large 32 bit integer overflows */
	if (sizeof(time_t) == 4 && tm_year > 2038)
	{
		return TIME_MAX;
	}

	/* representation of months as 0..11*/
	if (tm_mon < 1 || tm_mon > 12)
	{
		return 0; /* error in month format */
	}
	tm_mon--;
	
	/* representation of days as 0..30 */
	tm_day--;

	/* number of leap years between last year and 1970? */
	tm_leap_4 = (tm_year - 1) / 4;
	tm_leap_100 = tm_leap_4 / 25;
	tm_leap_400 = tm_leap_100 / 4;
	tm_leap = tm_leap_4 - tm_leap_100 + tm_leap_400 - tm_leap_1970;

	/* if date later then February, is the current year a leap year? */
	if (tm_mon > 1 && (tm_year % 4 == 0) &&
		(tm_year % 100 != 0 || tm_year % 400 == 0))
	{
		tm_leap++;
	}
	tm_days = 365 * (tm_year - 1970) + days[tm_mon] + tm_day + tm_leap;
	tm_secs = 60 * (60 * (24 * tm_days + tm_hour) + tm_min) + tm_sec - tz_offset;

	/* has a 32 bit overflow occurred? */
	return (tm_secs < 0) ? TIME_MAX : tm_secs;
}

/**
 *  Convert a date into ASN.1 UTCTIME or GENERALIZEDTIME format
 */
chunk_t asn1_from_time(const time_t *time, asn1_t type)
{
	int offset;
	const char *format;
	char buf[BUF_LEN];
	chunk_t formatted_time;
	struct tm t;
	
	gmtime_r(time, &t);
	if (type == ASN1_GENERALIZEDTIME)
	{
		format = "%04d%02d%02d%02d%02d%02dZ";
		offset = 1900;
	}
	else /* ASN1_UTCTIME */
	{
		format = "%02d%02d%02d%02d%02d%02dZ";
		offset = (t.tm_year < 100)? 0 : -100;
	}
	snprintf(buf, BUF_LEN, format, t.tm_year + offset, 
			 t.tm_mon + 1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec);
	formatted_time.ptr = buf;
	formatted_time.len = strlen(buf);
	return asn1_simple_object(type, formatted_time);
}

/*
 * Defined in header.
 */
void asn1_debug_simple_object(chunk_t object, asn1_t type, bool private)
{
	int oid;
	
	switch (type)
	{
		case ASN1_OID:
			oid = asn1_known_oid(object);
			if (oid != OID_UNKNOWN)
			{
				DBG2("  '%s'", oid_names[oid].name);
				return;
			}
			break;
		case ASN1_UTF8STRING:
		case ASN1_IA5STRING:
		case ASN1_PRINTABLESTRING:
		case ASN1_T61STRING:
		case ASN1_VISIBLESTRING:
			DBG2("  '%.*s'", (int)object.len, object.ptr);
			return;
		case ASN1_UTCTIME:
		case ASN1_GENERALIZEDTIME:
			{
				time_t time = asn1_to_time(&object, type);

				DBG2("  '%T'", &time, TRUE);
			}
			return;
		default:
			break;
	}
	if (private)
	{
		DBG4("%B", &object);
	}
	else
	{
		DBG3("%B", &object);
	}
}

/**
 * parse an ASN.1 simple type
 */
bool asn1_parse_simple_object(chunk_t *object, asn1_t type, u_int level, const char* name)
{
	size_t len;
	
	/* an ASN.1 object must possess at least a tag and length field */
	if (object->len < 2)
	{
		DBG2("L%d - %s:  ASN.1 object smaller than 2 octets", level, name);
		return FALSE;
	}
	
	if (*object->ptr != type)
	{
		DBG2("L%d - %s: ASN1 tag 0x%02x expected, but is 0x%02x",
			 level, name, type, *object->ptr);
		return FALSE;
	}
	
	len = asn1_length(object);
	
	if (len == ASN1_INVALID_LENGTH || object->len < len)
	{
		DBG2("L%d - %s:  length of ASN.1 object invalid or too large",
			 level, name);
		return FALSE;
	}
	
	DBG2("L%d - %s:", level, name);
	asn1_debug_simple_object(*object, type, FALSE);
	return TRUE;
}

/**
 * ASN.1 definition of an algorithmIdentifier
 */
static const asn1Object_t algorithmIdentifierObjects[] = {
	{ 0, "algorithmIdentifier",	ASN1_SEQUENCE,	ASN1_NONE         }, /* 0 */
	{ 1,   "algorithm",			ASN1_OID,		ASN1_BODY         }, /* 1 */
	{ 1,   "parameters",		ASN1_EOC,		ASN1_RAW|ASN1_OPT }, /* 2 */
	{ 1,   "end opt",			ASN1_EOC,		ASN1_END  	      }, /* 3 */
	{ 0, "exit",				ASN1_EOC,		ASN1_EXIT         }
};
#define ALGORITHM_ID_ALG			1
#define ALGORITHM_ID_PARAMETERS		2

/*
 * Defined in header
 */
int asn1_parse_algorithmIdentifier(chunk_t blob, int level0, chunk_t *parameters)
{
	asn1_parser_t *parser;
	chunk_t object;
	int objectID;
	int alg = OID_UNKNOWN;
	
	parser = asn1_parser_create(algorithmIdentifierObjects, blob);
	parser->set_top_level(parser, level0);
	
	while (parser->iterate(parser, &objectID, &object))
	{
		switch (objectID)
		{
			case ALGORITHM_ID_ALG:
				alg = asn1_known_oid(object);
				break;
			case ALGORITHM_ID_PARAMETERS:
				if (parameters != NULL)
				{
					*parameters = object;
				}
				break;
			default:
				break;
		}
	}
	parser->destroy(parser);
	return alg;
}

/*
 *  tests if a blob contains a valid ASN.1 set or sequence
 */
bool is_asn1(chunk_t blob)
{
	u_int len;
	u_char tag = *blob.ptr;

	if (tag != ASN1_SEQUENCE && tag != ASN1_SET)
	{
		DBG2("  file content is not binary ASN.1");
		return FALSE;
	}

	len = asn1_length(&blob);

	/* exact match */
	if (len == blob.len)
	{
		return TRUE;
	}

	/* some websites append a surplus newline character to the blob */
	if (len + 1 == blob.len && *(blob.ptr + len) == '\n')
	{
		return TRUE;
	}

	DBG2("  file size does not match ASN.1 coded length");
	return FALSE;
}

/*
 * Defined in header.
 */
bool asn1_is_printablestring(chunk_t str)
{
	const char printablestring_charset[] =
		"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 '()+,-./:=?";
	u_int i;
	
	for (i = 0; i < str.len; i++)
	{
		if (strchr(printablestring_charset, str.ptr[i]) == NULL)
			return FALSE;
	}
	return TRUE;
}

/**
 * codes ASN.1 lengths up to a size of 16'777'215 bytes
 */
static void asn1_code_length(size_t length, chunk_t *code)
{
	if (length < 128)
	{
		code->ptr[0] = length;
		code->len = 1;
	}
	else if (length < 256)
	{
		code->ptr[0] = 0x81;
		code->ptr[1] = (u_char) length;
		code->len = 2;
	}
	else if (length < 65536)
	{
		code->ptr[0] = 0x82;
		code->ptr[1] = length >> 8;
		code->ptr[2] = length & 0x00ff;
		code->len = 3;
	}
	else
	{
		code->ptr[0] = 0x83;
		code->ptr[1] = length >> 16;
		code->ptr[2] = (length >> 8) & 0x00ff;
		code->ptr[3] = length & 0x0000ff;
		code->len = 4;
	}
}

/**
 * build an empty asn.1 object with tag and length fields already filled in
 */
u_char* asn1_build_object(chunk_t *object, asn1_t type, size_t datalen)
{
	u_char length_buf[4];
	chunk_t length = { length_buf, 0 };
	u_char *pos;
	
	/* code the asn.1 length field */
	asn1_code_length(datalen, &length);
	
	/* allocate memory for the asn.1 TLV object */
	object->len = 1 + length.len + datalen;
	object->ptr = malloc(object->len);
	
	/* set position pointer at the start of the object */
	pos = object->ptr;
	
	/* copy the asn.1 tag field and advance the pointer */
	*pos++ = type;
	
	/* copy the asn.1 length field and advance the pointer */
	memcpy(pos, length.ptr, length.len); 
	pos += length.len;
	
	return pos;
}

/**
 * Build a simple ASN.1 object
 */
chunk_t asn1_simple_object(asn1_t tag, chunk_t content)
{
	chunk_t object;
	
	u_char *pos = asn1_build_object(&object, tag, content.len);
	memcpy(pos, content.ptr, content.len); 
	pos += content.len;
	
	return object;
}

/**
 * Build an ASN.1 BIT_STRING object
 */
chunk_t asn1_bitstring(const char *mode, chunk_t content)
{
	chunk_t object;
	u_char *pos = asn1_build_object(&object, ASN1_BIT_STRING, 1 + content.len);

	*pos++ = 0x00;
	memcpy(pos, content.ptr, content.len);
	if (*mode == 'm')
	{
		free(content.ptr);
	}
	return object;
}

/**
 * Build an ASN.1 INTEGER object
 */
chunk_t asn1_integer(const char *mode, chunk_t content)
{
	chunk_t object;
	size_t len;
	u_char *pos;

	if (content.len == 0 || (content.len == 1 && *content.ptr == 0x00))
	{
		/* a zero ASN.1 integer does not have a value field */
		len = 0;
	}
	else
	{
		/* ASN.1 integers must be positive numbers in two's complement */
		len = content.len + ((*content.ptr & 0x80) ? 1 : 0);
	}
	pos = asn1_build_object(&object, ASN1_INTEGER, len);
	if (len > content.len)
	{
		*pos++ = 0x00;
	}
	if (len)
	{
		memcpy(pos, content.ptr, content.len);
	}
	if (*mode == 'm')
	{
		free(content.ptr);
	}
	return object;
}

/**
 * Build an ASN.1 object from a variable number of individual chunks.
 * Depending on the mode, chunks either are moved ('m') or copied ('c').
 */
chunk_t asn1_wrap(asn1_t type, const char *mode, ...)
{
	chunk_t construct;
	va_list chunks;
	u_char *pos;
	int i;
	int count = strlen(mode);
	
	/* sum up lengths of individual chunks */ 
	va_start(chunks, mode);
	construct.len = 0;
	for (i = 0; i < count; i++)
	{
		chunk_t ch = va_arg(chunks, chunk_t);
		construct.len += ch.len;
	}
	va_end(chunks);
	
	/* allocate needed memory for construct */
	pos = asn1_build_object(&construct, type, construct.len);
	
	/* copy or move the chunks */
	va_start(chunks, mode);
	for (i = 0; i < count; i++)
	{
		chunk_t ch = va_arg(chunks, chunk_t);
		
		memcpy(pos, ch.ptr, ch.len);
		pos += ch.len;

		if (*mode++ == 'm')
		{
			free(ch.ptr);
		}
	}
	va_end(chunks);
	
	return construct;
}

/**
 * ASN.1 definition of time
 */
static const asn1Object_t timeObjects[] = {
	{ 0, "utcTime",			ASN1_UTCTIME,			ASN1_OPT|ASN1_BODY 	}, /* 0 */
	{ 0, "end opt",			ASN1_EOC,				ASN1_END  			}, /* 1 */
	{ 0, "generalizeTime",	ASN1_GENERALIZEDTIME,	ASN1_OPT|ASN1_BODY 	}, /* 2 */
	{ 0, "end opt",			ASN1_EOC,				ASN1_END  			}, /* 3 */
	{ 0, "exit",			ASN1_EOC,				ASN1_EXIT  			}
};
#define TIME_UTC			0
#define TIME_GENERALIZED	2

/**
 * extracts and converts a UTCTIME or GENERALIZEDTIME object
 */
time_t asn1_parse_time(chunk_t blob, int level0)
{
	asn1_parser_t *parser;
	chunk_t object;
	int objectID;
	time_t utc_time = 0;
	
	parser= asn1_parser_create(timeObjects, blob);
	parser->set_top_level(parser, level0);
	
	while (parser->iterate(parser, &objectID, &object))
	{
		if (objectID == TIME_UTC || objectID == TIME_GENERALIZED)
		{
			utc_time = asn1_to_time(&object, (objectID == TIME_UTC)
									? ASN1_UTCTIME : ASN1_GENERALIZEDTIME);
		}
	}
	parser->destroy(parser);
	return utc_time;
}